Александр Лутовинов: «Космическая сфера — в принципе международная»

ПОРТАЛ «Научная Россия»: 20 апреля на общем собрании членов Российской академии наук поднимался вопрос о международном сотрудничестве. О совместных исследованиях в сфере космоса рассказал заместитель директора Института космических исследований РАН, председатель координационного совета профессоров РАН, профессор РАН Александр Лутовинов.

«Космическая сфера — в принципе международная, поэтому здесь сотрудничество было, развивалось и продолжает развиваться. Тем более последние эксперименты, которые и делаются в космосе, и сейчас которые проходят, в том числе обсерватория «Спектр-РГ», будущие планируемые миссии, становятся все более дорогостоящими, более сложными. И практически ни одна страна в мире не может себе позволить в одиночку сделать крупный проект такого уровня. Поэтому что Россия, что Соединенные Штаты, что Европа, как правило, в тех или иных пропорциях сотрудничают», — сказал Александр Анатольевич.

Источник: ПОРТАЛ «Научная Россия»

Академик А.М. Черепащук о проекте «Спектр-РГ»

20 апреля 2021 г., 17:20. Сегодня в Москве проходит Общее собрание Российской академии наук, оно посвящено 60-летию первого полета человека в космос и другим актуальным темам. Академик, заслуженный профессор МГУ, научный руководитель Государственного астрономического института им. П.К. Штернберга (ГАИШ) Анатолий Черепащук рассказал «Научной России» об уникальности проекта «Спектр-РГ» для мировой астрономии, а также прокомментировал повестку Общего собрания.

Источник: ПОРТАЛ «Научная Россия»

Александр Сергеев о баллистико-навигационном обеспечении «Спектр-РГ».

Александр Сергеев о научных достижениях

ПОРТАЛ «НАУЧНАЯ РОССИЯ»

Сегодня, на общем собрании РАН президент РАН академик Александр Сергеев рассказал о важных научных достижениях, полученных российскими учеными в 2020 году. В частности, о баллистико-навигационном обеспечении управления полетом космического аппарата «Спектр-РГ».

«Первый результат по обеспечению запуска и обеспечению на орбите космического аппарата «Спектр-РГ». Успех «Спектра-РГ», который выведен в область точки Лангранжа за полтора миллиона километров от Земли, — это очень большое достижение наших математиков, потому что рассчитать эту траекторию, рассчитать точки корректировки этой траектории было очень важным делом», — сказал спикер.

Из доклада Александра Сергеева

источник: ПОРТАЛ «НАУЧНАЯ РОССИЯ»

«Аппарат чувствует себя превосходно»: главный конструктор проекта «Спектр-РГ» — о работе космической обсерватории


— Расскажите о проекте «Спектр-РГ». В чём его уникальность?

— Космический комплекс «Спектр-РГ» с астрофизической обсерваторией создан по заказу государственной корпорации «Роскосмос» и предназначен для наблюдения астрофизических объектов в рентгеновском диапазоне электромагнитного спектра. Для этих целей он оснащён двумя уникальными рентгеновскими телескопами, а именно: телескопом eROSITA разработки консорциума во главе с Институтом внеземной физики имени Макса Планка (Германия) и рентгеновским телескопом ART-XC совместной разработки ИКИ РАН и Федерального ядерного центра ВНИИЭФ (Саров). Эти оба телескопа размещаются на платформе «Навигатор». Всё вместе образует космический аппарат.

Головным разработчиком космического комплекса и космического аппарата выступает НПО Лавочкина, головной научной организацией является ИКИ РАН. По соглашению между госкорпорацией «Роскосмос» и Немецким космическим агентством происходит деление научных данных, полученных с телескопа eROSITA.

Если говорить про телескопы, то они и похожи, и разные. У них похожий принцип работы. Каждый телескоп представляет собой, по сути, семь маленьких телескопов. Оба телескопа оснащены рентгеновскими зеркалами косого падения, так называемой вольтеровской оптикой, и имеют по семь независимых детекторов. Но они работают в несколько отличном диапазоне. Если телескоп eROSITA работает в более мягком рентгеновском диапазоне, то телескоп ART-XC — в более жёстком. Тем самым они логично дополняют друг друга, обеспечивая более ценные научные результаты.

Космический аппарат запущен 13 июля 2019 года ракетой-носителем «Протон» и разгонным блоком ДМ, благополучно выведен на отлётную траекторию. Отделился от разгонного блока на ней, и практически сразу, через пару минут, поймали его сигнал и приступили к лётным испытаниям.

На этапе перелёта, который продлился до октября, мы проводили калибровки научной аппаратуры, тонкую настройку всего космического аппарата, служебных систем, коррекции траектории перелёта. Надо сказать, что коррекций понадобилось меньше, чем планировалось, так как выведение было достаточно точным.

— В чём особенность наблюдения и исследования космоса в рентгеновском излучении? Какие особенные данные можно получить?

— В рентгеновском диапазоне значительно лучше видны объекты, которые хорошо излучают в нём. Это чёрные дыры, ядра активных галактик, сверхмассивные чёрные дыры, звёзды с активной короной. Да, они видны и с других телескопов. Но рентгеновский диапазон значительно дополняет и расширяет наши знания.

Телескопы и космический аппарат в целом предназначены для работы в двух режимах. Первый режим — это обзор всего неба с высокой чувствительностью в угловом разрешении с целью построения сверхчёткой, сверхподробной карты звёздного неба. Никогда в мире с такой чувствительностью этого не делалось.

Второй — наблюдение в режиме трёхосной ориентации уже выбранных источников. Вот на первом этапе интересные области выявили, на втором этапе их активно пронаблюдали, поняли, что это за источники, какова их природа, каковы характеристики.

На данный момент завершено два полных обзора, построена лучшая на данный момент карта рентгеновских источников. Найдено более 1 млн неизвестных ранее источников как телескопом eROSITA, так и телескопом ART-XC. Всего будет сделано восемь сканов звёздного неба, карта будет значительно расширена, углублена и уточнена. И этой картой учёные будут пользоваться как минимум несколько десятилетий.

— Почему телескоп был выведен не на околоземную орбиту, а в так называемую точку Лагранжа? Что это за точка?

— Рабочей орбитой космического аппарата является окрестность точки Лагранжа L₂ системы «Солнце — Земля». Действительно, на ранних этапах проекта рассматривалось много орбит, но в результате на этапе эскизного проекта мы остановились именно на точке Лагранжа L₂. Это точка, удалённая на расстояние 1,5 млн км от Земли, и она очень подходит как раз для проведения таких наблюдений. Там нет резких скачков «Солнце — тень», далеко от радиационных поясов Земли. Есть свои особенности, но условия значительно мягче.

Кроме того, взаимное расположение космического аппарата, Земли и Солнца позволяют нам, не прерывая наблюдений, передавать научную информацию, не переориентируя аппарат. То есть у нас антенны всегда смотрят в сторону Земли. Расположение этих трёх объектов друг относительно друга меняется, но незначительно. Это и позволяет сделать восемь полных сканов за четыре года.

— А почему нужно совершить несколько оборотов, чтобы сделать полное сканирование? Почему одного оборота недостаточно?

— Мы накапливаем чувствительность. Сделав несколько сканов через какие-то промежутки времени, мы можем видеть и изменения: объекты погасли, объекты появились и так далее. Кроме того, это время накопления. Чем дольше вы смотрите в одну точку, тем лучше различаете детали. А мы смотрим вокруг себя на 360°.

— Были внештатные ситуации во время работы «Спектра-РГ»?

— Слава Богу, всё в штатном режиме. Космический аппарат чувствует себя превосходно. Да, у нас на борту очень сложные уникальные телескопы. Они требуют регулярной тонкой подстройки. Но это совершенно штатный режим, это предусмотрено эксплуатационной документацией. На наш взгляд, лучше работы и пожелать нельзя аппарату.

— «Спектр-РГ» продолжает линейку «Спектров». Как он дополняет, расширяет её возможности?

— Действительно, это не первый аппарат. Его предшественник — космический аппарат «Спектр-Р» (или «Радиоастрон») — закончил своё активное существование в 2019 году за несколько месяцев до запуска «Спектра-РГ». «Спектр-Р» — уникальный инструмент для астрофизиков. Это десятиметровый сложнейший радиотелескоп, построенный здесь, в НПО Лавочкина. И уникален он тем, что это, по сути, огромный интерферометр.

Это фактически стереозрение, только один глаз находится на Земле, а второй — в космосе на расстоянии до 370 тыс. км. Наблюдения одного объекта с такой базой позволяет получить его чёткие характеристики. Планировалось, что «Спектр-Р» отработает три года, а он отработал больше семи лет. Дал очень хорошие научные результаты, которые полностью до сих пор не обработаны. Они сейчас обрабатываются, это займёт ещё какое-то время. «Спектр-Р» — рекордсмен книги рекордов Гиннесса. Это самый большой космический радиотелескоп, самое высокоугловое разрешение.

Ссылка на оригинал https://ru.rt.com/i5k9

 

Бурная жизнь скоплений галактик: рентгеновский взгляд СРГ/eROSITA на скопление галактик Кома

Скопления галактик — это динамические системы, которые непрерывно растут за счет аккреции больших и маленьких порций материи. Такой процесс должен приводить к сложной структуре в распределении темной материи внутри скоплений, а также к ударным волнам и «холодным фронтам» в горячем газе. Очень подробные рентгеновские изображения скопления галактика Кома получили телескопы обсерватории «Спектр-РГ», работающей вблизи точки L2 уже более года. Благодаря им удалось в деталях исследовать процесс слияния скоплений, невероятно бурный и длительный.

Скопление галактик в созвездии Волосы Вероники (также известное как Кома) — особенное. Оно очень массивное — содержит тысячи галактик, и близкое — находится на расстоянии менее 100 Мпк. Это первый объект, в котором было установлено присутствие «темной материи» (скрытой массы). Это сделал астрофизик Фриц Цвикки в 1933 году. В 1950-х годах оно стало первым скоплением, в котором обнаружили диффузное радиогало.

В конце 1960-х годов возникла идея, что «темной материей» может быть горячий межгалактический газ. И действительно вскоре горячий газ в Коме был обнаружен первым рентгеновским спутником Uhuru (NASA). Более того, оказалось, что именно горячий газ составляет почти 80% всего нормального «барионного» вещества, в то время как звезды и галактики скопления Кома содержат не более 20% барионов скопления (барионы — семейство элементарных частиц, к которому относятся в том числе ядерные частицы протоны и нейтроны).

Но и горячего газа оказалось недостаточным для объяснения феномена «темной материи» — последней всё равно должно было быть гораздо больше. Полная масса барионов в горячем газе и в звездах скопления галактик не превышает 15 % от полной массы скопления.

Рентгеновские наблюдения пока не решили полностью проблемы «темной материи», но существенно обогатили знания астрофизиков о том, что происходит в скоплениях галактик. Благодаря рентгеновской астрономии можно определять плотность, температуру и другие свойства горячего газа, заполняющего скопление, «видеть», как он распределен в пространстве. Наблюдения же за самим горячим газом стали важнейшим источником информации и о параметрах невидимого «темного» вещества. Именно оно определяет гравитационный потенциал скопления (если говорить проще, насколько сильно скопление «притягивает» к себе вещество) и то, как в нем распределен сам горячий газ.

Близость Комы делает ее привлекательной для исследований во всех энергетических диапазонах, хотя огромные угловые размеры скопления зачастую усложняют задачу: телескопы с большим полем зрения обычно не могут «увидеть» всех деталей скопления, а более «чувствительные» телескопы не способны оглядеть его целиком.

Рентгеновская обсерватория «Спектр-РГ» с телескопами eROSITA и ART-XC им. М. Н. Павлинского на борту была специально разработана для решения таких задач. В режиме сканирования ей удалось построить полную карту всего скопления. На рентгеновском изображении, полученном телескопом СРГ/eROSITA в результате двух сеансов растровых наблюдений (рис. 1), виден участок неба размером ~10 Мпк (на расстоянии скопления), что как минимум в два раза больше вириального радиуса скопления (в этих пределах которого сосредоточена большая часть массы скопления).

Рис. 2 Рентгеновское изображение скопления галактик Кома в диапазоне 0.4 — 2 кэВ, полученное при помощи телескопа СРГ/eROSITA (с) Российский консорциум СРГ/еРОЗИТА, 2021
Рис. 2 Рентгеновское изображение скопления галактик Кома в диапазоне 0.4 — 2 кэВ, полученное при помощи телескопа СРГ/eROSITA. Размер изображения составляет ~6 градусов, что соответствует 10 Mpc на расстоянии скопления, логарифмическая цветовая шкала охватывает 5 порядков величины. Основное скопление находится на стадии слияния с группой галактик NGC 4839 (яркое пятно справа внизу от скопления Кома) (с) Российский консорциум СРГ/еРОЗИТА, 2021

Кроме множества источников (в основном, это далекие активные ядра галактик), выделяются два ярких диффузных пятна, которые соответствуют основному скоплению и группе галактик NGC 4839 (справа внизу от центра). Скопление и группа находятся в процессе слияния. На самом деле, NGC 4839 уже однажды прошла через ядро основного скопления насквозь и вот-вот снова начнет «падать» обратно на центр.

Численное моделирование позволяет предсказать некоторые явления, связанные с этим конкретным этапом слияния, которые можно наблюдать. Головная ударная волна, созданная группой NGC 4839 во время ее первого прохода (примерно миллиард лет назад), теперь должна располагаться на окраине скопления, а газ, вытесненный из ядра основного скопления, должен падать обратно, образуя «вторичную» ударную волну. Новые данные позволяют предположить, что структура длиной в несколько мегапарсек, наблюдаемая справа от ядра, представляет собой именно «вторичную» ударную волну. Рис. 2 показывает соответствие между численными гидродинамическими расчетами и наблюдениями телескопа СРГ/eROSITA.

Рис.2 Рентгеновское изображение, в котором яркость центральной части искусственно подавлена, со схематичными обозначениями наиболее значимых структур, связанных с процессом слияния скопления с группой NGC 4839 (с) Российский консорциум СРГ/еРОЗИТА, 2021
Рис. 2 Рентгеновское изображение, в котором яркость центральной части искусственно подавлена, со схематичными обозначениями наиболее значимых структур, связанных с процессом слияния скопления с группой NGC 4839. Синей штриховой линией показана предполагаемая траектория группы, которая начала движение по направлению к центру скопления Кома с северо-запада и в настоящее время находится близко к апоцентру. Предполагаемое положение двух ударных волн показано кривыми красного и фиолетового цветов. Ударная волна, расположенная ближе к центру, обусловлена возвращением вытесненного газа обратно в состояние гидростатического равновесия. Это наиболее заметная особенность, которая непосредственно видна на изображении как резкий скачок поверхностной яркости. Зеленая линия показывает тусклый рентгеновский «мостик», соединяющий NGC 4839 с основным скоплением, который, возможно, является следом, оставленным группой при пролете через скопление Кома (с) Российский консорциум СРГ/еРОЗИТА, 2021

Еще одно интересное следствие сценария слияния состоит в том, что радиогало, ограниченное вторичной ударной волной, фактически прошло через две ударные волны — первый раз через головную ударную волну, вызванную первым пролетом NGC 4839 через ядро Комы со скоростью порядка 3500 километров в секунду, и совсем недавно — через вторичную ударную волну. Этот процесс, сопровождающийся ускорением частиц и сжатием газа, способен замедлить быстрое «старение» релятивистских частиц в радиогало, теряющих энергию из за синхротронных потерь в магнитном поле на радиоизлучение и на обратное комптоновское рассеяние на фотонах реликтового излучения.

«Возможно, что и в других скоплениях, имеющих радиогало, работает подобный механизм, — говорит академик Евгений Чуразов, ведущий автор статьи. — А наша следующая задача — это исследовать самые внешние области скопления, где газ, падающий на Кому, тормозится на ударной волне и становится частью скопления».

Астрономам хорошо известно и замечательное изображение Комы в микроволновом диапазоне длин волн, полученное обсерваторией Planck (ESA, Рис. 3). Из-за эффекта Сюняева-Зельдовича яркость реликтового излучения понижена в направлении на скопление с горячим газом. Изображение Комы в микроволновых лучах очень похоже на рентгеновское, полученное телескопом СРГ/eROSITA (Рис. 1). Но рентгеновский поток скопления и амплитуда эффекта Сюняева-Зельдовича по-разному зависят от плотности и температуры газа. Это открывает возможность оценить температуру горячего газа по отношению яркостей в двух различных диапазонах длин волн.

Рис. 3. Изображение скопления Кома в микроволновых лучах, полученное спутником Planck (c) ESA/ LFI & HFI Consortia
Рис. 3. Изображение скопления Кома в микроволновых лучах, полученное спутником Planck (c) ESA/ LFI & HFI Consortia

Соотношение между изображениями, полученными телескопами СРГ/eROSITA и Planck, дает представление о карте температуры газа (рис. 4). Такие измерения температуры не требуют какой-либо спектральной информации в рентгеновском диапазоне. Это достаточно неожиданный, на первый взгляд, метод. Он использует только поверхностную «отрицательную» яркость скопления в микроволновых лучах и поверхностную яркость рентгеновского излучения в диапазоне 0.4–2 кэВ, где телескоп СРГ/eROSITA имеет высокую чувствительность, а фотоны имеют энергии значительно ниже измеряемой температуры. Также, чтобы получить карту распределения температуры, необходимо знать (или предположить) распределение плотности газа в скоплении.

Рис 4. Карта температур электронов (взвешенная с плотностью газа), полученная из отношения изображения в микроволновом диапазоне, полученном спутником Planck (ESA) на основе эффекта Сюняева-Зельдовича, к изображению скопления Кома в рентгеновском диапазоне (СРГ/eROSITA) (с) Российский консорциум СРГ/еРОЗИТА, 2021
Рис 4. Карта температур электронов (взвешенная с плотностью газа), полученная из отношения изображения в микроволновом диапазоне, полученном спутником Planck (ESA) на основе эффекта Сюняева-Зельдовича, к изображению скопления Кома в рентгеновском диапазоне (СРГ/eROSITA). Контурами показана рентгеновская поверхностная яркость. Ядро основного скопления горячее, температура порядка 10 кэВ (100 миллионов градусов). Синяя область справа внизу соответствует более холодному газу группы галактик NGC4389 (с) Российский консорциум СРГ/еРОЗИТА, 2021

Как и ожидалось в рамках обсуждаемого сценария слияния, ядро основного скопления горячее (температура близка к 100 миллионам градусов), в то время как менее массивная группа NGC 4839 способна удерживать часть своего более чем в 3 раза холодного газа. Это показано на рис. 4 как область синего цвета в правом нижнем углу от ядра.

«Первая статья по длительным наблюдениям скопления галактик Кома уже направлена в журнал и опубликована в виде астро-препринта, — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев. — Работа над данными этих наблюдений продолжается и обещает немало новых интересных результатов о физике скопления и поведении темного вещества в нем.

Скопление Кома — это самое глубокое поле, исследованное российским консорциумом обсерватории «Спектр-РГ» в ходе ее перелета с Земли в точку L2. Глубина этого поля позволяет детально исследовать не только интереснейшее скопление Кома, но и искать в рентгеновских лучах проявления других астрономических объектов, входящих в окружающее его сверхскопление галактик Кома. А это сверхскопление содержит более 3000 галактик.

Ну и, конечно же, мы надеемся открыть на периферии этого поля (вне пределов яркого скопления на рис.1) квазары — аккрецирующие сверхмассивные черные дыры на больших красных смещениях, а также увидеть и нанести на карту неба немало далеких скоплений галактик, находящихся далеко за скоплением Кома на рекордных расстояниях».

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3–8 кэВ) и жестком (4–20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

***

Tempestuous life beyond R_500: X-ray view on the Coma cluster with SRG/eROSITA. I. X-ray morphology, recent merger, and radio halo connection, by Churazov, E.; Khabibullin, I.; Lyskova, N.; Sunyaev, R.; Bykov, A. M.

Pairs of giant shock waves (N-waves) in merging galaxy clusters, by Zhang, Congyao; Churazov, Eugene; Zhuravleva, Irina

Close-up view of an ongoing merger between the NGC 4839 group and the Coma cluster — a post-merger scenario, by Lyskova, N.; Churazov, E.; Zhang, C.; Forman, W.; Jones, C.; Dolag, K.; Roediger, E.; Sheardown, A.

Около миллиона рентгеновских источников на «северной» половине неба по данным СРГ/еРОЗИТА

К середине декабря 2020 г. орбитальная рентгеновская обсерватория «Спектр-РГ» завершила второй обзор неба. Сложение данных двух обзоров позволяет почти вдвое увеличить чувствительность рентгеновских карт, которые получают телескопы обсерватории.

RGB-карта неба, построенная телескопом СРГ/еРОЗИТА по сумме двух первых обзоров неба (с) Гильфанов, Медведев, Сюняев и российский консорциум СРГ/еРОЗИТА, 2021
RGB-карта неба, построенная телескопом СРГ/еРОЗИТА по сумме двух первых обзоров неба. Цвета на карте соответствуют диапазонам энергий: красный — 0.3–0.6 кэВ, зеленый — 0.6–1.0 кэВ, синий —1.0–2.3 кэВ. Многочисленные яркие точки — источники рентгеновского излучения зарегистрированные телескопом. На этой карте невозможно изобразить все (почти миллион!) источников, зафиксированных за год наблюдений. Разрешение карты позволяет увидеть лишь самые яркие из них. Широкая темная полоса вблизи экватора полушария соответствует положению плоскости нашей Галактики Млечный Путь, заполненной холодным газом и пылью, которые поглощают мягкие рентгеновские лучи. Также видно тепловое излучение горячего газа в гало нашей Галактики. Ярко-желтые и оранжевые области в правой части карты — «пузыри еРОЗИТЫ», включающие в себя Северный Полярный Шпур. Яркие источники в центре карты — это остатки вспышек сверхновых (среди них Петля в Лебеде) в области звездообразования в созвездии Лебедя и знаменитые объекты: черная дыра Лебедь Х-1, яркие аккрецирующие нейтронные звезды Лебедь Х-2 и Лебедь Х-3 в тесных двойных системах и мощнейшая радиогалактика Лебедь А с джетами длиной в миллионы световых лет. Рентгеновские изображения этих и других ярчайших источников несколько размыты из-за однократных рассеяний в оптической системе телескопа © Гильфанов, Медведев, Сюняев и российский консорциум СРГ/еРОЗИТА, 2021

«По данным телескопа СРГ/еРОЗИТА мы видим около миллиона источников, которые расположены на той полусфере, за обработку данных которой отвечают российские ученые. Из них примерно 200 000 — это звезды, расположенные в нашей Галактике, активные в рентгеновском диапазоне». — говорит член-корреспондент РАН Марат Гильфанов, сотрудник Института космических исследований РАН.

«Это колоссальное количество данных, с которым впервые встречаются рентгеновские астрономы. Небо предстает удивительным и «живым», мы видим, что как за полгода между двумя сканами неба свою яркость изменили многие десятки тысяч рентгеновских источников. Каждый день, исследуя большой круг на небе шириной всего в один градус, мы обнаруживаем переменность сотен источников, которые были более тусклыми или наоборот яркими всего полгода назад», — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев.

Примерно 20 % всех источников, открываемых телескопом СРГ/еРОЗИТА, составляют звезды в нашей Галактике с очень горячими коронами типа солнечной, но гораздо более яркими. Соответственно и рентгеновские вспышки на этих звездах гораздо ярче, чем на Солнце. Данные СРГ/еРОЗИТА также содержат богатейшую информацию о неустойчивостях в аккреционных дисках вокруг сверхмассивных черных дыр, регулирующих поступление к ним аккрецирующего вещества. еРОЗИТА детектирует блазары, в которых излучают релятивистские джеты — струи вещества, выбрасываемые из окрестностей сверхмассивных черных дыр со скоростями, близкими к скорости света.

«Недалеко» от обсерватории «Спектр-РГ», на такой же гало-орбите вокруг точки L2 работает астрометрический спутник Gaia (ESA). Обсерватория Gaia оснащена специализированным оптическим телескопом и следит за собственным движением более чем миллиарда звезд в нашей Галактике. Относительно недавно научная группа телескопа Gaia опубликовала новые каталоги звезд и изменений их положения, полученные по результатам пятилетнего сканирования Галактики. Зарегистрированы все объекты в нашей Галактике, достаточно яркие в оптическом диапазоне спектра и изменившие свое положение на небе на одну-две миллисекунды дуги за это время.

В то же время внегалактические объекты — квазары и активные ядра галактик находятся на гораздо больших расстояниях от нас и поэтому для наблюдателей с Земли остаются неподвижными на небесной сфере. Сравнение каталога рентгеновских источников «Спектра-РГ» с каталогом объектов Gaia, а также с результатами измерения их собственных движений позволяет различать внегалактические источники и звезды в нашей Галактике, короны которых ярки в рентгеновских лучах.

Выделять звезды помогает и тот факт, что поток энергии их оптического и инфракрасного излучения значительно выше, чем в рентгеновском диапазоне. Для большинства квазаров и ядер активных галактик это отношение гораздо меньше.

«Мы работаем над каталогами рентгеновских источников, чтобы все астрономы, работающие в других диапазонах спектра, могли сразу проверить, как ведет себя интересующий их объект в рентгеновских лучах», — продолжает академик Сюняев.

«Полученные данные позволили повысить контрастность многоцветной рентгеновской карты неба, которую продолжает накапливать телескоп СРГ/еРОЗИТА. Ряд структур, обнаруженных на карте первого обзора, например, южный пузырь еРОЗИТЫ (в галактических координатах), видны более четко, и теперь их можно детально исследовать», — говорит Марат Гильфанов.

Напомним, что «пузыри еРОЗИТЫ» — это гигантские структуры размером в десятки тысяч световых лет, то есть сравнимые с диаметром Галактики. Карта неба, полученная телескопом СРГ/еРОЗИТА после первого обзора неба и, в частности, обнаружение южного пузыря, доказали, что их возникновение связано с активностью в центре нашей Галактики десятки миллионов лет назад.

Три недели назад обсерватория «Спектр-РГ» начала третий обзор неба (из восьми запланированных). Отсканировано в третий раз уже более 5 000 квадратных градусов на небесной сфере. Телескоп СРГ/еРОЗИТА, изготовленный Институтом внеземной физики Общества им. Макса Планка в Германии, продолжает накапливать рентгеновские фотоны, открывать новые источники рентгеновского излучения и следить за изменениями их яркости. Предприятия Роскосмоса ведут управление спутником, антенны дальней космической связи ежедневно принимают научные данные и посылают команды на спутник и научные приборы, находящиеся на расстоянии полутора миллиона километров от Земли (в четыре раза дальше Луны). Ученые ИКИ РАН ведут обработку научных данных на мощных компьютерах в центре данных проекта.

RGB-карта участка неба, покрытого в ходе первых трех недель сканирования, начатого в середине декабря 2020 г. (третий обзор всего неба), телескопом СРГ/еРОЗИТА © Гильфанов, Медведев, Сюняев и российский консорциум СРГ/еРОЗИТА, 2021
RGB-карта участка неба, покрытого в ходе первых трех недель сканирования, начатого в середине декабря 2020 г. (третий обзор всего неба), телескопом СРГ/еРОЗИТА. Цвета на карте соответствуют диапазонам энергий: красный — 0.3–0.6 кэВ, зеленый — 0.6–1.0 кэВ, синий —1.0–2.3 кэВ. Многочисленные яркие точки — источники рентгеновского излучения зарегистрированные телескопом. Белым цветом закрашена часть небесной сферы, еще не покрытая в ходе третьего обзора неба © Гильфанов, Медведев, Сюняев и российский консорциум СРГ/еРОЗИТА, 2021

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3–8 кэВ) и жестком (4–20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

Приливное разрушение он-лайн: телескоп СРГ/еРОЗИТА увидел событие приливного разрушения звезды сверхмассивной черной дырой

9 ноября 2020 г. телескоп СРГ/еРОЗИТА (SRG/eROSITA) на борту орбитальной рентгеновской обсерватории «Спектр-РГ» зарегистрировал новый источник на небе, который привлек внимание российских астрофизиков мягкостью своего рентгеновского спектра. Наблюдения на крупнейшем в мире 10-метровом телескопе Кека (Гавайи, США), проведенные по предложению команды СРГ/еРОЗИТА, подтвердили, что зарегистрировано излучение аккреционного диска со светимостью в десять миллиардов раз превышающей светимость нашего Солнца во всех диапазонах спектра. Такие источники с временем жизни порядка полугода должны появляться при приливном разрушении звезды, пролетевшей слишком близко от сверхмассивной черной дыры.

К середине декабря 2020 г. телескопы рентгеновской обсерватории «Спектр-РГ» завершили второй обзор неба. Таким образом, за год, прошедший с начала сканирования в декабре 2019 г., все небо было «просмотрено» обсерваторией два раза. Сравнение двух карт неба, полученных телескопом еРОЗИТА, позволяет исследовать переменность источников рентгеновского излучения и, в частности, искать рентгеновские транзиенты — объекты, излучение от которых не детектировалось в первом обзоре, но которые стали яркими во втором (или наоборот). Такие источники, увеличившие за полгода свою яркость более, чем в 10 раз, телескоп СРГ/еРОЗИТА находит в среднем примерно раз в сутки.

Среди внегалактических транзиентов, детектируемых еРОЗИТой, особый интерес астрофизиков вызывают события, связанные с приливным разрушением звезд в гравитационном поле сверхмассивной черной дыры. Одно из таких событий и было обнаружено сотрудниками отдела астрофизики высоких энергий ИКИ РАН 9 ноября 2020 г.

«Внегалактический рентгеновский транзиент SRGeJ213527.3−181634 привлек наше внимание мягкостью своего спектра, который имел температуру всего 70 электрон-вольт (эВ), и тем фактом, что он был расположен в ничем не примечательной, сравнительно небольшой галактике, в которой ранее не регистрировалась активность ядра — сверхмассивной черной дыры в ее центре. Это классические признаки события приливного разрушения звезды» — говорит член-корреспондент РАН Марат Гильфанов.

Рентгеновские изображения участка неба размером 5х5 угловых минут в диапазоне 0.3-2.2 кэВ, полученные телескопом СРГ/еРОЗИТА в первом (слева) и во втором (справа) обзоре неба. Каждая светлая точка изображает один (или более) рентгеновский фотон. В первом обзоре из окрестности источника не зарегистрировано ни одного фотона, во втором обзоре — более ста рентгеновских фотонов
Рентгеновские изображения участка неба размером 5х5 угловых минут в диапазоне 0.3-2.2 кэВ, полученные телескопом СРГ/еРОЗИТА в первом (слева) и во втором (справа) обзоре неба. Каждая светлая точка изображает один (или более) рентгеновский фотон. В первом обзоре из окрестности источника не зарегистрировано ни одного фотона, во втором обзоре — более ста рентгеновских фотонов

«Анализ архивных данных показал, что несколькими месяцами ранее телескоп Zwicky Transient Facility Калифорнийского технологического института (California Institute of Technology, США) зарегистрировал от этой галактики оптическую вспышку ZTF20abgbdpr, которая продолжается до сих пор и была первоначально классифицирована как вероятный кандидат в сверхновые. Наши результаты показали, что это была не сверхновая», — продолжает профессор РАН Сергей Сазонов.

А менее чем через две недели после открытия объекта телескопом СРГ/еРОЗИТА, американские астрономы на 10-метровом телескопе обсерватории Кека на Гавайских островах получили спектр этого объекта, в котором регистрировались эмиссионные линии водорода и ионов гелия и кислорода.

Результаты наблюдений опубликованы в Астрономической телеграмме #14246.

«Эти спектральные особенности и появление яркого объекта менее чем за полгода подтвердили наше предположение, что мы имеем дело с событием приливного разрушения звезды. Было также измерено красное смещение родительской галактики z=0.0942, — говорит академик Рашид Сюняев, научный руководитель обсерватории «Спектр-РГ». — Мы все с детства наслышаны о приливах в океанах и морях. И эти приливы — результат наличия Луны в 300 000 км от Земли. Можно легко представить себе, как приливные гравитационные силы разрывают даже в сотне гравитационных радиусов звезду, пролетающую мимо сверхмассивной черной дыры. Значительная часть вещества разорванной звезды образует аккреционный диск вокруг черной дыры и медленно падает в черную дыру, посылая нам сигнал в виде мощного рентгеновского излучения. Астрономы наблюдали за последние 25 лет уже два прохода звезды вблизи (но дальше приливного радиуса) от черной дыры с массой в 4 миллиона солнечных масс в центре нашей Галактики. Так что приливное разрушение звезд черными дырами — это не такая уж экзотика».

Событие приливного разрушения звезды в гравитационном поле сверхмассивной черной дыры в представлении художника. (c) NASA/CXC/M.Weiss
Событие приливного разрушения звезды в гравитационном поле сверхмассивной черной дыры в представлении художника. (c) NASA/CXC/M.Weiss

Орбитальная рентгеновская обсерватория «Спектр-РГ» продолжает сканирование небесной сферы — две недели назад начался третий (из восьми запланированных) обзор неба. Предприятия ГК «Роскосмос» ведут управление спутником, антенны дальней космической связи ежедневно осуществляют прием научных данных и посылают команды на спутник и его научные приборы, которые находятся на расстоянии в полтора миллиона километров от Земли (в четыре раза дальше Луны). Ученые ИКИ РАН ведут обработку научных данных на компьютерах в центре данных проекта.

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

Телескоп ART-XC им. М.Н. Павлинского обсерватории «Спектр-РГ» повторно осмотрел все небо

15 декабря 2020 года, спустя год после начала сканирования неба, телескоп ART-XC им. М.Н. Павлинского обсерватории «Спектр-РГ» завершил свой второй обзор всего неба.

Карта всего неба, полученная по результатам двух обзоров телескопом ART-XC им. М. Н. Павлинского, обсерватория «Спектр-РГ», декабрь 2020 г.
Карта всего неба, полученная по результатам двух обзоров телескопом ART-XC им. М. Н. Павлинского, обсерватория «Спектр-РГ», декабрь 2020 г.

Уникальное сочетание большого поля зрения, высокого углового разрешения и достаточно жесткого диапазона энергий позволяет телескопу ART-XC получать четкие изображения любых областей на небе, включая центральную зону нашей Галактики. На рисунке показана карта всего неба (в галактических координатах) в диапазоне энергий 4-12 кэВ, построенная по совокупности данных первого и второго обзоров. Как и ожидалось, полное количество рентгеновских источников на суммарной карте возросло почти в два раза, примерно до 1000.

Каталоги в жестких рентгеновских лучах, подобные тому, что получил телескоп ART-XC за год работы, предыдущими инструментами создавались десятилетиями. Среди зарегистрированных телескопом ART-XC источников обнаружено нескольких десятков ранее неизвестных объектов в Галактике и за ее пределами, в том числе сверхмассивные черные дыры, окруженные толщей холодного газа и невидимые в мягких рентгеновских лучах. Часть из зарегистрированных источников проявляет сильную переменность, о чем говорит сравнение карт первого и второго обзоров.

Наблюдения неба с помощью телескопа ART-XC продолжаются в штатном режиме, и в следующие 3 года обзор всего неба будет повторен еще 6 раз, что позволит обнаружить на небе еще несколько тысяч рентгеновских источников.

Телескоп ART-XC им. М.Н. Павлинского создан в России, а «Спектр-РГ» — первая отечественная обсерватория, работающая в окрестности точки Лагранжа L2, на расстоянии около полутора миллионов километров от Земли.

Телескоп СРГ/еРОЗИТА обнаружил крупномасштабные пузыри горячего газа в гало Млечного Пути

Структуры горячего газа с обеих стороны Галактического диска, четко видимые в рентгеновском обзоре всего неба, возникли, скорее всего, из-за ударных волн, вызванных мощнейшим всплеском активности центра нашей Галактики десятки миллионов лет назад.

Открытие опубликовано в журнале Nature 9 декабря 2020 г. Половина соавторов статьи — сотрудники российских научно-исследовательских институтов, члены научных групп телескопа СРГ/eРОЗИТА.

На первой карте обзора всего неба, созданной рентгеновским телескопом еРОЗИТА (eROSITA), одним из двух инструментов на борту орбитальной обсерватории «Спектр-РГ», астрономы обнаружили удивительную новую деталь: огромную округлую структуру ниже плоскости Млечного Пути, занимающую существенную часть Южного Неба.

Подобная структура на Северном Небе, так называемый Северный Полярный Шпур, известна со времен становления радиоастрономии и рентгеновской астрономии. Долгие годы считалось, что она возникла как следствие взрыва близкой к Солнцу сверхновой десятки или сотни тысяч лет назад. Но взятые вместе, северная и южная структуры на карте напоминают ореол в форме песочных часов, достаточно симметричный относительно центра Галактики, который отстоит от Солнца на расстояние в 25 тысяч световых лет (1 световой год — примерно 9.46 триллиона километров).

Карта диффузного рентгеновского излучения в диапазоне 0.6–1.0 кэВ, полученная телескопом СРГ/еРОЗИТА. Вклад точечных источников был удален. Изображение из статьи P. Predehl, R.A. Sunyaev, et al

«Благодаря высокой чувствительности, хорошему спектральному и угловому разрешению и низкому фону, телескоп СРГ/еРОЗИТА, сканирующий все небо каждые шесть месяцев, стала уникальным инструментом для обнаружения и изучения объектов, размеры которых намного больше поля зрения телескопа и составляют значительную часть всего неба», — объясняет Михаэль Фрайберг (Michael Freyberg), ученый, работающий с данными телескопа СРГ/еРОЗИТА в Институте внеземной физики Общества им. Макса Планка (MPE, Германия).

Крупномасштабное рентгеновское излучение, наблюдаемое СРГ/еРОЗИТА в диапазоне 0.6–1.0 кэВ, демонстрирует проявления этих гигантских пузырей с медленно меняющейся яркостью на большой части неба. Их угловые размеры сравнимы с размерами всей нашей Галактики Млечный Путь, что соответствует линейным размерам в десяток килопарсек, т.е. до 30 000 световых лет в поперечнике.

«Пузыри еРОЗИТЫ» имеют поразительное морфологическое сходство с хорошо известными «пузырями Ферми», но не совпадают с ними геометрически, а размеры последних заметно меньше. «Пузыри Ферми», были обнаружены годы назад гамма-обсерваторией «Ферми» (Fermi, NASA) на гораздо более высоких энергиях фотонов (гамма-излучение), в миллион раз более энергичных, чем рентгеновские фотоны, фиксируемые обсерваторией «Спектр-РГ».

Наложение карт нашей Галактики, полученных телескопами СРГ/еРОЗИТА и «Ферми» (NASA). Изображение из статьи P. Predehl, R.A. Sunyaev, et al.
Наложение карт нашей Галактики, полученных телескопами СРГ/еРОЗИТА и «Ферми» (NASA). Диффузное рентгеновское излучение, регистрируемое телескопом СРГ/еРОЗИТА (0.6–1 кэВ, обозначено оттенками голубого), окружает область более жесткого излучения (гигаэлектрон-вольты, обозначено красным), получившей название «пузыри Ферми». Сравнение этих карт указывает на тесную связь между пузырями Ферми и еРОЗИТы. Обращает на себя внимание и высокая яркость плоскости Галактики в гамма-лучах, что обусловлено наличием в ней межзвездного газа и космических лучей. Изображение из статьи P. Predehl, R.A. Sunyaev, et al.

«Телескоп СРГ/еРОЗИТА завершает сейчас второе сканирование всего неба, увеличивая вдвое число рентгеновских фотонов, зарегистрированных в частности и от открытых ею «пузырей» — говорит академик Рашид Сюняев, научный руководитель орбитальной обсерватории «Спектр-РГ». — Нам предстоит громадная работа, ведь данные СРГ/еРОЗИТА позволяют выделить немало рентгеновских спектральных линий, излученных высокоионизованными ионами газа в различных областях «пузырей». Мы получили возможность исследовать обилие химических элементов, степень их ионизации, плотность и температуру излучающего газа во многих зонах пузырей, исследовать положение ударных волн и оценивать характерные времена, прошедшие со времени гигантской вспышки, породившей эти пузыри. Поражает, что пузыри еРОЗИТЫ и «Фeрми» разделены в пространстве и размеры пузырей еРОЗИТЫ заметно больше. Скорее всего, на их границе важнейшую роль играют магнитные поля, затрудняющие выход космических лучей за пределы пузырей «Ферми»».

Иллюстрация возможного положения «пузырей еРОЗИТА» (EB, eROSITA bubbles, желтый цвет) и «пузырей Ферми» (FB, Fermi bubbles, розовый цвет) относительно Галактики и Солнечной системы. Изображение из статьи P. Predehl, R.A. Sunyaev, et al.
Иллюстрация возможного положения «пузырей еРОЗИТА» (EB, eROSITA bubbles, желтый цвет) и «пузырей Ферми» (FB, Fermi bubbles, розовый цвет) относительно Галактики и Солнечной системы. Приблизительные размеры структур, полученные в этом исследовании, указаны рядом со стрелками соответствующего цвета. Изображение из статьи P. Predehl, R.A. Sunyaev, et al.

Это открытие помогает понять циркуляцию вещества в Млечном Пути и вокруг него, а также в других галактиках, которые мы не можем наблюдать с такой степенью детализации из за громадного расстояния до них.

Большая часть обычной (т. н. барионной, от слова «барион» — семейство элементарных частиц, к которому относятся в том числе протоны и нейтроны) материи во Вселенной невидима для наших глаз. Все звезды и галактики, которые мы наблюдаем с помощью оптических телескопов, дают возможность увидеть менее 10 % от общего количества барионов. Ожидается, что огромные количества ненаблюдаемой барионной материи находятся в разреженных ореолах, окружающих галактики, словно коконы, а также в «нитях» (филаментах), соединяющих скопления галактик, как космическую паутину. Эти ореолы горячие, их температура составляет миллионы градусов, и поэтому они доступны для наблюдения в рентгеновском диапазоне длин волн.

Пузыри, которые «видит» телескоп СРГ/еРОЗИТА, являются «отражением» возмущений в этой оболочке горячего газа, которые были вызваны выбросом вещества вследствие активности сверхмассивной черной дыры в центре нашей Галактики, либо гигантской вспышкой звездообразования в газе центральной части Галактики.

«Размер пузырей и температура газа в них позволяют судить лишь о полной выделившейся энергии и, приблизительно, о временной шкале, — говорит академик Евгений Чуразов (ИКИ РАН), один из авторов статьи. — Но, чтобы однозначно выбрать одну из гипотез, этого недостаточно».

Сейчас «наша» черная дыра проявляет себя как очень слабый рентгеновский и радиоисточник, время от времени слабо вспыхивающий в рентгеновских и инфракрасных лучах. Но она вполне могла быть весьма активной в прошлом. Мы знаем примеры такой активности из наблюдений сверхмассивных черных дыр в других галактиках.

В любом случае энергия, необходимая для формирования этих огромных пузырей, должна была быть очень большой — 1056 эрг. Это соответствует выделению энергии 100 000 сверхновых, что аналогично оценкам других вспышек в активных ядрах далеких галактик.

«Резкие границы этих пузырей, скорее всего, являются следами ударных волн, вызванных мощнейшим выбросом энергии из центра нашей Галактики в ее гало, — отмечает Петер Предель (Peter Predehl, MPE), один из двух ведущих авторов статьи. — Такое объяснение ранее предлагалось для пузырей «Ферми», а теперь, согласно данным телескопа СРГ/еРОЗИТА, полный объем и морфология этих структур стали очевидными». «»Шрамы», оставленные такими вспышками, долго «заживают» в таких ореолах» — добавляет Андреа Мерлони (Andrea Merloni, MPE), научный руководитель телескопа СРГ/еРОЗИТА.

«Многоцветная» рентгеновская карта неба, полученная телескопом СРГ/еРОЗИТА, содержит колоссальный объем информации о межзвездной среде Млечного Пути в целом, — говорит член-корреспондент РАН, один из создателей рентгеновской карты неба и соавтор статьи Марат Гильфанов (ИКИ РАН). — Видно, что излучение горячего и теплого газа приходит к нам со всех направлений, но его яркость в направлении Галактической плоскости сильно понижена из-за поглощения холодным веществом, расположенным в спиральных рукавах и в диске нашей Галактики. Наблюдаемую картину усложняет вклад излучения т. н. «Локального Пузыря», природа которого до сих пор не вполне понятна, и мы ожидаем, что СРГ/еРОЗИТА внесет свой вклад в разрешение и этой загадки».

***

Рентгеновский телескоп СРГ/еРОЗИТА был запущен в космос на борту орбитальной обсерватории «Спектр-РГ» 13 июля 2019 года. Большая эффективная площадь зеркал и детекторов и широкое поле зрения СРГ/еРОЗИТА предназначены для глубокого обзора всего неба в рентгеновских лучах. В течение шести месяцев (декабрь 2019 — июнь 2020) СРГ/еРОЗИТА выполнила первый обзор всего неба на энергиях 0,2-8 кэВ, значительно более глубокий, чем самый чувствительный до этого обзор всего неба рентгеновского телескопа ROSAT (Германия) в 1990 г. на энергиях 0,1–2,4 кэВ. Предварительный анализ карты звездного неба первого обзора всего неба телескопа СРГ/еРОЗИТА обнаружил более миллиона точечных рентгеновских источников и около 20 000 протяженных. Около 80 % точечных источников представляют собой далекие активные ядра галактик (АЯГ). В Млечном Пути СРГ/еРОЗИТА зафиксировала около 200 000 коронально активных звезд, включая около 150 звезд, вокруг которых расположены планеты (~ 10% всех известных за пределами поля Кеплера).

Карта всего неба СРГ/еРОЗИТА (c) М.Гильфанов, Р.Сюняев, Е.Чуразов (от ИКИ), H.Brunner, A.Merloni, J.Sanders (от МПЕ).

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

  1. Detection of large-scale X-ray bubbles in the Milky Way halo P. Predehl, R. A. Sunyaev, W. Becker, H. Brunner, R. Burenin, A. Bykov, A. Cherepashchuk, N. Chugai, E. Churazov, V. Doroshenko, N. Eismont, M. Freyberg, M. Gilfanov, F. Haberl, I. Khabibullin, R. Krivonos, C. Maitra, P. Medvedev, A. Merloni, K. Nandra, V. Nazarov, M. Pavlinsky, G. Ponti, J. S. Sanders, M. Sasaki, S. Sazonov, A. W. Strong & J. Wilms
  2. 09.12.2020 eROSITA finds large-scale bubbles in the halo of the Milky Way Пресс-релиз Института внеземной физики Общества им. Макса Планка