Первый «учебный» месяц ART-XC

Чтобы получить хорошие научные результаты, требуется не только создать уникальную научную установку — нужно еще приобрести достаточный опыт в её использовании, выяснить все тонкости и научиться максимально использовать ее сильные стороны.

Основной задачей нашей команды в этом сентябре было научиться проводить обзоры неба с ART-XC. Конечно, перед запуском мы занимались компьютерным моделированием и оптимизацией предстоящих наблюдений, но в этих симуляциях оставалось достаточно много неучтенных факторов — так, например, никто никогда не измерял влияние фона заряженных частиц в районе точки L2 на рентгеновские детекторы. А именно от величины этого фона зависит какую стратегию проведения обзоров предпочесть — стараться увидеть больше слабых источников на небольшой площади или за то же время покрывать большие части неба, детектируя более яркие. В начале сентября был проведен глубокий обзор спирального рукава Галактики в созвездии Наугольника — области богатой массивными двойными рентгеновскими системами. Затем, мы переключили свое внимание на проведение большого — 40 квадратных градусов! (т.е. занимающего на небе площадь в 200 больше чем площадь Луны) — обзора Галактического центра. Поскольку большая часть массы Млечного Пути лежит в этом направлении, плотность рентгеновских источников в Галактическом центре наибольшая. А так как многие из этих источников сильнопеременные, то в эту область всегда интересно смотреть — а вдруг что-нибудь новое вспыхнет!

Кроме двух этих глубоких обзоров, совместно со вторым телескопом обсерватории СРГ — eRosita — были проведены наблюдения, имитирующие предстоящий обзор всего неба. Во время этих тренировочных наблюдений космический аппарат сделал несколько полных оборотов вокруг оси, соединяющей Солнце и Землю (при таком вращении солнечные батареи аппарата все время смотрят на Солнце), сначала в одну, а потом и в другую сторону — всего эти обороты покрыли на небе полосу шириной в 1.5 градуса. Данные, полученные во время этих тренировочных оборотов помогли проверить как работает система ориентации обсерватории в таком режиме.

Всего, за сентябрь ART-XC покрыл наблюдениями несколько процентов неба — многообещающий старт! Для наглядности, мы построили карту неба в галактических координатах, на которую нанесли все зарегистрированные рентгеновские фотоны: чем ярче цвет на карте, тем больше фотонов пришло с этого направления на небе. Желтыми звездочками на карте показаны полюса эклиптики — каждый оборот обсерватории во время обзора будет проходить рядом с ними, так что после окончания четырехлетнего обзора в этих областях будет накоплена наибольшая экспозиция, а пока через них прошли только наши пробные «сканы». Яркие площадки, разбросанные по карте соответствуют точечным источникам, которые наблюдались в режиме прямого наведения, а узкие «дорожки», их соединяющие — следы перенаведений телескопа. В центре карты — Галактический центр, прямо над ним — Sco X-1 — ярчайший рентгеновский источник на небе, с которого и началась история рентгеновской астрономии, слева от него — 3C390.3, яркий квазар, а справа, под плоскостью Галактики — Крабовидная туманность, один из наиболее часто используемых калибровочных источников.

Близкие барстеры и Мышка в центре Галактики или несколько слов о важности углового разрешения

Одной из важнейших характеристик рентгеновского телескопа является его угловое разрешение — способность разделить две близкие звезды. При этом, поскольку рентгеновские телескопы всегда работают в тяжелых радиационных условиях, с большим фоном заряженных частиц, хорошее угловое разрешение позволяет видеть более тусклые объекты. Зеркала, работающие в стандартном рентгеновском диапазоне (0.5-10 кэВ), используются давно: еще в 1978 году была запущена Обсерватория им. Эйнштейна с первым зеркальным рентгеновским телескопом. Однако изготовление зеркал для более жесткого рентгеновского диапазона долго оставалось недосягаемой мечтой астрофизиков. Чем выше энергия фотона, тем под меньшим углом он должен упасть на поверхность зеркала, чтобы отразиться — точно так же, как брошенный камень отражается от поверхности воды. Из-за этого такие телескопы получаются длиннее и тяжелее. К тому же появляются дополнительные проблемы, связанные с подбором оптимального покрытия зеркал и их тонкой полировкой.
В 1989 году была запущена астрофизическая обсерватория ГРАНАТ, на борту которой работал рентгеновский телескоп АРТ-П, разработанный в ИКИ РАН. Вместо зеркал в нем использовалась кодирующая апертура — специальный метод, позволяющий получать неплохие изображения неба, полагаясь вместо сложной оптики на не менее сложную математику. Тогда удалось достичь углового разрешения в 5 минут дуги в диапазоне 3-20 кэВ. Чтобы сравнить АРТ-П с ART-XC, мы построили изображение участка неба вблизи центра Галактики, где расположены две яркие и близкие (на небе, на самом деле эти объекты весьма далеки друг от друга) маломассивные рентгеновские двойные системы — SLX 1744-299 и SLX 1744-300. Угловое расстояние между ними — всего 2.6 минуты, так что АРТ-П не мог их разрешить: вместо двух «звездочек», он показывал одну, но вытянутую в правильном направлении. ART-XC же, за счет гораздо более совершенной оптической системы, легко разделяет оба источника. А благодаря существенно возросшей чувствительности видит в этом поле еще один источник — плерион (туманность, подпитываемую ветром энергичного пульсара, расположенного в ее центре) Мышка, названный так за длинный хвост, хорошо видимый в радиодиапазоне.

Также, для сравнения мы привели данные телескопа NuSTAR, запущенного в 2012 году. NuSTAR обладает самыми совершенными зеркалами, предназначенными для жесткого рентгеновского диапазона — вплоть до 78 кэВ! Его угловое разрешение — 18 угловых секунд (FWHM — полная ширина пятна на половинной амплитуде), в то время как у ART-XC — около 30 секунд. Впрочем, у этих телескопов совершенно разные задачи — главной задачей ART-XC является проведение обзора всего неба — именно поэтому у него большое поле зрения — 36 угловых минут в диаметре, тогда как у NuSTAR, который создавался для изучения отдельных, самых интересных источников, поле зрения в семь раз меньше. И мы, конечно, надеемся, что в числе целей NuSTAR уже скоро появятся источники открытые ART-XC.

Кстати, обе эти маломассивные системы являются барстерами — компактными объектами в них являются нейтронные звезды, на поверхностях которых иногда происходят термоядерные взрывы. И один такой взрыв, от SLX 1744-300, мы уже увидели с помощью телескопа ART-XC.

Что в имени тебе моем? Первый рентгеновский источник, открытый SRG/ART-XC

На всем небе известно около миллиона рентгеновских источников. Около сотни из них имеют свои собственные имена: «Быстрый барстер», «Великий аннигилятор» и.т.п., а все прочие называются единообразно — короткая аббревиатура, в честь обсерватории, которая первой открыла этот источник, и координаты — обычно в экваториальной системе. Так и получаются имена типа GRS 1915+105 — источник обсерватории «Гранат», с координатами 19 часов 15 минут прямого восхождения и 10 градусов cклонения.

После продолжительного периода калибровок ART-XC наконец приступил к выполнению своей ранней научной программы. И в первом же сканирующем наблюдении балджа (центрального «утолщения») Галактики удалось обнаружить новый рентгеновский источник — теперь уже названный SRGA J174956-34086 (SRGA — источник обсерватории SRG, открытый телескопом ART-XC). Впрочем, в рентгеновской астрономии открыть новый источник — это как правило лишь первый шаг на длинном и тернистом пути определения его физической природы — источник может оказаться как далеким квазаром, свет от которого добирался до нас многие миллиарды лет, так и близкой звездной системой с компактным объектом — нейтронной звездой или черной дырой. Для того, чтобы решить подобную загадку астрофизики стараются сначала максимально хорошо локализовать найденный объект, а потом осмотреть это место телескопами, работающими на других длинах волн — в радио, оптическом, инфракрасном или гамма-диапазонах. Так, ничем не примечательная тусклая звездочка, видимая только в большой телескоп может оказаться ярчайшим на всем небе объектом, если посмотреть на неё рентгеновскими «глазами».

Для того, чтобы точнее локализовать обнаруженный объект было выполнено короткое наблюдение на другом космическом рентгеновском телескопе — XRT обсерватории Swift имени Нейла Герельса, обладающем лучшим угловым разрешением. В мягких рентгеновских лучах SRGA J174956-34086 оказался тусклее, чем в жестких, что обычно встречается у источников, расположенных за облаками межзвездного газа и пыли, что впрочем не помешало XRT определить его координаты с точностью в несколько секунд дуги. В данных инфракрасного обзора VVV в области локализации источника оказалось две достаточно яркие звезды. Теперь предстоит работа по получению их оптических спектров и определению, может ли какая-нибудь из них быть источником рентгеновского излучения, которое увидел ART-XC, или нужно искать другие, более слабые объекты. Это, однако, дело будущего, а свой след в каталогах рентгеновских источников ART-XC уже оставил.

И, конечно, большое спасибо команде Swift, за выполненные по нашей заявке наблюдения.

Слева — изображение источника по данным ART-XC в диапазоне 4-11 кэВ, справа — по данным Swift/XRT (0.3-10 кэВ). Зеленым кружком показана область локализации источника по данным XRT.
Изображение источника по данным телескопов ART-XC и Swift/XRT

Что увидела обсерватория СРГ на кусочке внегалактического неба: eROSITA «открывает» свой первый глаз

Орбитальная обсерватория «Спектр-РГ» (СРГ) провела важный тест, исследовав небольшой участок внегалактического неба одним из семи модулей телескопа eROSITA. Результаты хорошо согласуются с предполетными ожиданиями.

Сейчас идет работа по проверкам и отладкам других шести модулей. Она будет завершена в течение нескольких недель до перехода к началу калибровок и последующего четырехлетнего периода сканирования всего неба.

Обсерватория СРГ была запущена с космодрома Байконур 13 июля 2019 г. ракетой-носителем «Протон-М» и разгонным блоком ДМ-03. В настоящее время она находится в окрестности точки Лагранжа L2 системы «Солнце-Земля», примерно в 1,6 млн. км от Земли. Планируется, что обсерватория будет проводить наблюдения в течении шести с половиной лет, оставаясь на протяженной орбите вокруг точки L2. В течение первых четырех лет она будет сканировать небо так же, как и ее предшественники: космические обсерватории ROSAT, WMAP, «Планк» и «Гайа».

В состав обсерватории СРГ входят два рентгеновских телескопа: eROSITA (разработан Институтом внеземной физики Общества им. Макса Планка, MPE, Германия), чувствительный к мягким рентгеновским лучам, и ART-XC (разработан в Институте космических исследований РАН, ИКИ РАН, Россия), работает на более высоких энергиях.

Основная цель миссии — построить карты всего неба в мягком (0.3–8 кэВ) и жестком (4–20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью и обнаружить около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, многочисленные рентгеновские двойные системы, яркие в рентгеновских лучах звезды, а также построить карты диффузного излучения Галактики.

Успех миссии зависит как от чувствительности самих телескопов, так и от способности обсерватории проводить наблюдения непрерывно по 24 часа в сутки в течение четырех лет. Очень важна роль наземных пунктов, принимающих эти данные.

К радости команд, работающих с обсерваторией СРГ в России и в Германии, первые испытания были успешными для телескопа АРТ-XC, а теперь и для телескопа eROSITA.

Результаты наблюдений небольшого участка внегалактического неба 26 и 27 августа 2019 г. телескопом eROSITA/СРГ
Результаты наблюдений небольшого участка внегалактического неба 26 и 27 августа 2019 г. телескопом eROSITA/СРГ

На рисунке показаны результаты наблюдений небольшого участка внегалактического неба 2×2 градуса, наблюдавшегося 26 и 27 августа 2019 года. Центральный участок этого поля размером ~ 1×1 градус известен астрофизикам как UDS (Ultra Deep Survey. т.е. зона Сверхглубокого Обзора). Полученное изображение содержит сотни рентгеновских источников. Оно было получено в результате комбинирования нескольких точечных наблюдений и наблюдений в режиме сканирования. Эффективная экспозиция в центре поля эквивалентна 6 тысячам секунд (примерно два часа) наблюдений всеми семью модулями телескопа eROSITA.

Большинство из сотен видимых на изображении объектов представляют собой квазары (сверхмассивные черные дыры, излучающие за счет выделения гравитационной энергии веществом, падающим в черную дыру). Они настолько ярки в рентгеновских лучах, что видны даже на космологических расстояниях. Часть объектов отождествляется с активными ядрами не слишком далеких галактик и даже со звездами с очень яркими рентгеновскими коронами в нашей Галактике.

Очень яркое диффузное пятно в верхнем правом углу — массивное скопление галактик на красном смещении z = 0.139, известное как ACO 329. Скопления галактик представляют собой одни из самых массивных объектов Вселенной. Около 85% их массы составляет «темное вещество» неизвестной природы и лишь около 15% вносит привычное барионное вещество, сосредоточенное в звездах тысяч галактик скопления (свет которых мы видим в оптических лучах) и разреженном горячем межгалактическом газе с температурой в десятки миллионов градусов, излучающем в рентгеновских лучах. Именно эти рентгеновские лучи видит eROSITA на спутнике СРГ.

Только один из семи модулей телескопа eROSITA участвовал в этих тестовых наблюдениях в рамках первоначальных испытаний. Несмотря на то, что обсерватория СРГ пока еще не работает на полную мощность, оценки чувствительности (пока лишь одного из детекторов) подтверждены.
Одновременные наблюдения телескопами eROSITA и АРТ-XC позволят получить спектры ярких источников в широком энергетическом диапазоне, что позволит быстро классифицировать их.

Первые изображения, полученные обоими телескопами, пока не исследованы досконально. Но они уже продемонстрировали потенциал орбитальной обсерватории «Спектр-РГ» и показали, что надежды астрофизиков на открытие большого числа новых рентгеновских источников в ходе обзора всего неба не лишены оснований.

Эффективная работа коллективов НПО им. Лавочкина и других предприятий, создавших платформу «Навигатор» для СРГ и управляющих его работой, специалистов на громадных антеннах в Медвежьих Озерах и Уссурийске, принимающих информацию и посылающих команды для приборов, инженеров и ученых в ИКИ и MPE, дала свои первые плоды. Они вселяют уверенность в реальность построения подробнейших рентгеновских карт Вселенной.

Эта новость печатается по поручению Российского и Германского консорциумов телескопа СРГ/eROSITA.

10.09.2019 A glimpse of extragalactic sky with the SRG Observatory: eROSITA opens its first eye. Пресс-релиз Института внеземной физики Общества им. Макса Планка

Первое изображение телескопа СРГ/еРОЗИТА

26 августа 2019 года получено первое рентгеновское изображение с одного  из семи модулей телескопа еРОЗИТА орбитальной обсерватории СПЕКТР-РГ.

На изображении участка внегалактического неба площадью порядка одного квадратного градуса видны десятки рентгеновских источников, в основном активных ядер галактик и квазаров. Длительность экспозиции составила около 2000 секунд. Изображение показано в диапазоне энергий 0.5-2 кэВ.  Данные получены российским и немецким консорциумами телескопа СРГ/еРОЗИТА.

Первое рентгеновское изображение, полученное одним из семи модулей телескопа еРОЗИТА орбитальной обсерватории СПЕКТР-РГ в диапазоне энергий 0.5-2 кэВ. Изображение получено российским и немецким консорциумами телескопа СРГ/еРОЗИТА.

SRG/ART-XC: регулярные наблюдения области центра Галактики

Обсерватория СРГ, которая в данный момент находится на этапе перелета в окрестность точки Лагранжа L2 системы Солнце-Земля, проводит регулярные наблюдения области центра Галактики.

В галактическом центре наблюдается яркий источник, который является суперпозицией сверхмассивной черной дыры Стрелец А* и протяженного рентгеновского излучения окрестности черной дыры размером 4х8 парсек (Перез и др., 2015, Nature).

На изображении показана область центра Галактики, полученное 16 августа.

Изображение яркого рентгеновского источника 1E1743.1-2843 в центре Галактики (Лотти и др., 2016)

 

ART-XC продолжает наблюдать активность Sgr A*

Рентгеновский телескоп ART-XC на борту космической обсерватории СРГ продолжает наблюдения  Галактического Центра после сообщений о вспышечной активности Стрелец A*  (ATel #13007, #12768).

В недавних наблюдениях Sgr A* телескопом ART-XC 15-16 августа
(2019-08-14T23:40 — 2019-08-15T14:00 and 2019-08-15T23:40 — 2019-08-16T14:00, UTC) с общей экспозицией около 100 ксек был получен средний поток от источника в диапазоне 5-16 кэВ на уровне 1.6×10-11 erg cm-2s-1, соответствующий светимости 1.4×1035 erg s-1 для расстояния 8,5 кпк до ГЦ.

Полученные оценки хорошо согласуются с наблюдениями ART-XC 12 августа (ATel #13023). Мы также наблюдаем небольшое изменение потока на уровне 15% на временном масштабе в несколько часов. Более подробная информация будет предоставлена в публикации находящейся в стадии подготовки.

Опубликованная телеграмма: ATel #13039

Первая научная публикация: ART-XC/СРГ наблюдает активность Sgr A*

Коллаборация ART-XC/СРГ опубликовала первую астрономическую телеграмму посвященную наблюдениям сверхмассивной черной дыры в Галактическом центре Млечного Пути — Стрелец A*.

ATel #13023; M. Pavlinsky on behalf of ART-XC collaboration (IKI RAS, Moscow)
on 13 Aug 2019; 21:56 UT

Following the recent report on Sgr A* flaring activity (ATel #13007, #12768) ART-XC telescope onboard Spektr-RG observed the Galactic center region for 50 ks during the period between 2019-08-11 22:27:50 UTC and 2019-08-12 13:19:12 UTC

We found Sgr A* in unusually active state: using absorbed power-law spectral model (slope Γ=2, following Zhang+17) we estimated mean flux in 5-16 keV band as (1.6±0.2)x10-11 erg cm-2 s-1, which corresponds to the unabsorbed bolometric luminosity of 2×1035 erg s-1 (0.1-20 keV), assuming a distance of 8.5 kpc.

We also noticed variability on timescale of few kiloseconds.
Because of preliminary calibration status of ART-XC more accurate details will be provided in the following article.

Multi-wavelength observations are encouraged; ART-XC will observe Sgr A* between 14.08.2019 23:40 and 15.08.2019 15:20 UTC

http://www.astronomerstelegram.org/?read=13023

Спектр-РГ: Месяц в полете

Все системы аппарата функционируют штатно, в данный момент продолжаются работы по калибровке телескопа ARTXC и готовятся к включению детекторы телескопа eRosita. Расстояние от Земли на данный момент составляет около 1430 тыс. км.

Идет активная программа научных наблюдений, уже получены данные по ярким источникам рентгеновского излучения Cyg X-1, Cen X-3, Cen A, a также по центру Галактики Sagittarius A*.

На сайте NASA в разделе «астрофизическая картинка недели» размещено сообщение о первом свете обсерватории СРГ.

Seven First Lights of ART-XC

The Spektr-RG observatory (or SRG as it’s more commonly known) is a Russian-German X-ray observatory, launched on July 13, and currently on a journey to its final staging point, a region of precarious orbital stability in the earth-Sun system called «L2», about a million miles from earth along the earth-Sun line. Once it arrives at L2, SRG will survey the entire sky every six months over the next four years. SRG consists of two observing instruments. The Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument consists of 7 individual telescopes which will generate images of the X-ray sky in the energy band from 5 kilo-electronvolts up to 30 kilo-electronvolts, which is about 3 times higher in energy than most other imaging X-ray observatories, like ChandraXMM-Newton and Swift. ART-XC was developed by the Russian Academy of Sciences’ Space Research Institute, in cooperation with the Russian Federal Nuclear Centre; NASA’s Marshall Space Flight Center provided ART-XC’s X-Ray mirrors. Published: August 12, 2019

Полный текст можно посмотреть на сайте HEASARC.

Новое изображение, полученное ART-XC: Центавр в центре

Источник Центавр X-3 в центре поля зрения телескопа ART-XC. Изображение получено 3 августа 2019 г. в ходе юстировок телескопа
Источник Центавр X-3 в центре поля зрения телескопа ART-XC. Изображение получено 3 августа 2019 г. в ходе юстировок телескопа

В настоящее время (7.08.2019) аппарат «Спектр-РГ» продолжает перелёт в окрестность либрационной точки L2 системы «Солнце-Земля», продолжаются калибровки аппаратуры. В частности, разработчики ART-XC ожидают «первый свет» — первые изображения, полученные со второго телескопа eROSITA, чтобы сопоставить точность позиционирования двух телескопов.

***

Космический аппарат «Спектр-РГ» создан с участием Германии в рамках Федеральной космической программы России по заказу Российской Академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (АО «НПО Лавочкина», Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев; научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Павлинский; научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.