Три месяца обзора неба телескопом SRG/ART-XC

Представлена карта в галактических координатах, полученная после трёх месяцев обзора неба телескопом ART-XC обсерватории СРГ. На карту нанесены все события, зарегистрированные за этот период в диапазоне энергий 4-12 кэВ.

При проведении обзора нам необходимо всегда «держать» Землю в пределах диаграммы направленности рупора антенны космического аппарата для ежедневного сброса на Землю накопленной информации. В период с 8 декабря 2019 по 8 марта 2020 года угол между Землей и Солнцем превышал угол полураствора рупора, и ось вращения космического аппарата приходилось смещать от направления на Солнце в сторону Земли. Усреднённая суточная скорость поворота оси вращения аппарата оказалась 0.77 градуса в сутки и, как результат, за первые три месяца удалось осмотреть не половину всего неба, а только 39%, т.е. 16 тыс. кв. градусов. Следующие три месяца обзор неба пройдет в ускоренном режиме, с усреднённой скоростью поворота оси вращения 1.2 градуса в сутки. С 9 марта по 7 июня 2020 года предстоит осмотреть около 25 тыс. кв. градусов неба.

Некоторые детали на карте:

На карте видны несколько ярких полос, которые возникли из-за необходимости повторения обзоров этих участков неба.

В «северной» части неба выделяется ярчайший галактический источник Скорпион X-1 (Sco X-1). Именно с его открытия 58 лет назад началась внеатмосферная и внесолнечная рентгеновская астрономия. Этот источник для жителей Земли является вторым по яркости постоянным небесным рентгеновским источником после Солнца. Прекрасное временное разрешение и малое «мёртвое» время детекторов телескопа ART-XC позволяют им не “слепнуть” при наблюдении даже таких ярких источников, как Скорпион. Более того, яркие источники регистрируется детекторами ART-XC даже вне поля зрения телескопа – благодаря однократным отражениям фотонов от зеркальных систем. Именно из-за этого Скорпион X-1 выглядит на карте как протяжённый объект размером 2 кв. град.

На представленной карте неба невозможно увидеть все зарегистрированные телескопом ART-XC источники, отличающиеся в десятки тысяч раз по яркости. При построении этой карты пришлось более чем в сто раз увеличить исходный размер пикселя изображения, в результате чего слабые источники оказались “замыты” фоном. Такие источники, однако, можно увидеть на увеличенных картах небольших участков неба. В правом нижнем углу показано поле, содержащее катаклизмическую переменную TW Живописца — двойную систему, в которой вещество перетекает со звезды-компаньона на белый карлик. Этот слабый источник наблюдался буквально только что — 8 марта. Размер пикселя на этом изображении соответствует 20 угловым секундам, в то время как на карте всего неба размер пикселя в 20 раз больше.

 

Букет красивых рентгеновских объектов на небе для всех женщин нашей страны и мира от орбитальной обсерватории «Спектр-РГ» ко дню 8 марта

(с) СРГ/еРОЗИТА/ИКИ

Ученые-астрофизики Института космических исследований РАН поздравляют мам, бабушек, дочек, внучек, жен, прекрасных коллег и всех дам букетом рентгеновских изображений небесных объектов, полученных в ходе сканирования неба в рентгеновских лучах телескопом еРОЗИТА (eROSITA) обсерватории «Спектр-РГ». Среди них — остатки вспышек сверхновых звезд, радиопульсар, скопление молодых звезд (в тысячи раз моложе нашего Солнца) в области звездообразования в нашей Галактике, а также сверхмассивные черные дыры, галактики и скопления галактик за пределами Млечного Пути.

Большинство из этих изображений получено в ходе 5-минутных экспозиций, но на получение некоторых из них потребовались десятки часов наблюдений. Эти данные были получены в рамках российской квоты наблюдательного времени телескопа еРОЗИТА на российском спутнике «Спектр-РГ».(с) СРГ/еРОЗИТА/ИКИ

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

СРГ/еРОЗИТА: Есть рентгеновская карта трети всего неба!

Орбитальная обсерватория «Спектр-РГ» отмечает важный этап — построена одна треть рентгеновской карты всего неба. Количество зарегистрированных рентгеновских источников на российской половине этой карты (16,7% всего неба) превышает 95 000. Лишь одна шестая их часть была задетектирована немецким спутником ROSAT на единственной в мире полной рентгеновской карте неба, полученной в далеком 1990 году.

Зарегистрированное количество источников соответствует предсказаниям ученых.

Карта трети всего неба, полученная в ходе первого сканирования небесной сферы в обзоре СРГ/еРОЗИТА (с) СРГ/еРОЗИТА/ИКИ

На рисунке видно, что самая длительная экспозиция и плотность источников (на квадратный градус) набираются в районе полюсов эклиптики (на рисунке показан северный полюс), где пересекаются все сканы неба.

Появление темной полосы на изображении рентгеновского неба связано с поглощением мягких рентгеновских лучей газом и пылью в плоскости нашей Галактики.

На врезке слева показано «богатое» скопление галактик А 426, справа — ярчайший остаток вспышки сверхновой звезды (Cas А) в созвездии Кассиопеи. Напомним: каждое из этих изображения получено за 5-минутную экспозицию.

Сканирование неба телескопами орбитальной обсерватории «Спектр-РГ» продолжается. Предприятия Роскосмоса ведут управление спутником, антенны дальней космической связи ежедневно осуществляют прием научных данных и посылают команды на научные приборы. Ученые ИКИ РАН в оперативном режиме ведут обработку научных данных. Подобную карту на противоположной стороне неба строят ученые германского Института внеземной физики Общества имени Макса Планка (Max Planck Institut fuer Extraterrestrische Physik, MPE).

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Туманность Андромеды в рентгеновских лучах за 5 минут наблюдений телескопа еРОЗИТА обсерватории «Спектр-РГ»

Многие из нас видели на небе Туманность Андромеды – ближайшую к нам массивную спиральную галактику, которая по многим своим характеристикам является двойником нашего Млечного Пути. В ясную летнюю ночь Туманность Андромеды можно увидеть невооруженным глазом. Свет от нее идет к нам более 2 миллионов лет. Туманность Андромеды и Млечный путь медленно сближаются и, видимо, сольются  через три или четыре миллиарда лет. Вероятно, этот процесс будет очень непростым для землян, если они еще будут существовать в то далекое время.

Более двух месяцев, с 8 декабря 2019 г., орбитальная обсерватория «Спектр-РГ» совершает обзор всего неба в рентгеновских лучах. Раз в полгода сканирующие небо телескопы обсерватории в течение нескольких минут фиксируют рентгеновские лучи от любого объекта на рентгеновском небе. В январе этого года траектория сканов неба проходила и через Туманность Андромеды. В общей сложности галактика находилась в поле зрения телескопов обсерватории чуть больше пяти минут. Карта Туманности Андромеды в мягких рентгеновских лучах, полученная за это короткое время, показана на рисунке.

Карта Туманности Андромеды в мягких рентгеновских лучах (c) СРГ/еРОЗИТА/ИКИ 1 из 2
Карта Туманности Андромеды в мягких рентгеновских лучах (c) СРГ/еРОЗИТА/ИКИ

На этой карте мы видим несколько десятков ярких рентгеновских источников, сгущающихся к центру галактики и к ее спиральным рукавам. Большинство из этих источников — нейтронные звезды и черные дыры, аккрецирующие вещество звезд-доноров в тесной двойной системе. Под действием сил притяжения вещество нормальной звезды медленно перетекает на релятивистскую звезду, разогреваясь до температуры в десятки миллионов градусов и излучая рентгеновские лучи. Поток рентгеновского излучения от этих объектов столь велик, что телескоп еРОЗИТА/eROSITA обсерватории «Спектр-РГ» регистрирует от каждого из них десятки и сотни фотонов всего за 5 минут, пока они находятся в его поле зрения. Яркая область в центре изображения связана с высокой концентрацией компактных источников, а также с излучением горячего ионизованного газа в ядре галактики.

Рядом с галактикой Туманность Андромеды расположен ее спутник — карликовая эллиптическая галактика М32, названной так по ее порядковому номеру в астрономическом каталоге Мессье (сама Туманность Андромеды в каталоге Мессье имеет порядковый номер 31). Телескоп еРОЗИТА также зафиксировал рентгеновское излучение и от галактики М32.

Карта Туманности Андромеды SRG/eROSITA и GALEX
Карта Туманности Андромеды SRG/eROSITA и GALEX

На втором рисунке на рентгеновское изображение наложено ультрафиолетовое изображение Туманности Андромеды, полученное спутником GALEX (NASA), телескоп которого был чувствителен к ультрафиолетовым лучам. GALEX фиксировал в основном излучение молодых и горячих звезд. Такие звезды рождаются в зонах, богатых межзвездным газом, и ультрафиолетовое изображение показывает, как они концентрируются к спиральным рукавам Туманности Андромеды. В течение ближайших десятков миллионов лет многие из них взорвутся как сверхновые и породят новые нейтронные звезды и черные дыры. Те из релятивистских звезд, на которые аккрецирует достаточно вещества, наблюдаются телескопом еРОЗИТА в рентгеновском диапазоне.

По мере накопления экспозиции в ходе обзора неба, будут детектироваться все новые и новые источники в галактике, а также проявится излучения горячего газа, разогретого взрывами сверхновых звезд.

Обсерватория «Спектр-РГ» регистрирует взрывы звезд в далеких галактиках

Телескоп АРТ-ХС на борту обсерватории «Спектр-РГ» регистрирует гамма-всплески — мощные взрывы звезд в далеких галактиках. Это открывает новые интересные перспективы для наблюдений и совместных работ с другими обсерваториями.

Во время проведения обзора всего неба 1 января 2020 г. российский телескоп ART-XC на борту обсерватории «Спектр-РГ» зарегистрировал необычное и кратковременное (длительностью около 5 секунд) повышение интенсивности излучения в своих детекторах. При этом в поле зрения инструмента никаких ярких объектов в этот момент обнаружено не было. Более того, это повышение интенсивности регистрировалось только в трех детекторах из семи, которыми оснащен телескоп.

Проведенные исследования и сравнение с данными других обсерваторий показали, что телескоп ART-XC зарегистрировал мощный гамма-всплеск, связанный со взрывом звезды в далекой галактике. При этом сигнал от этого всплеска попал на детекторы телескопа, пройдя через его боковые стенки, т.е. сильно ослабленным. Именно поэтому он был виден только в детекторах, расположенных со стороны гамма-всплеска.

Анализ всего набора имеющихся на сегодняшний день данных показал, что с начала работы миссии телескоп ART-XC зарегистрировал около десятка гамма-всплесков, сигналы от которых пришли с боковых сторон. Хорошее временное разрешение телескопа позволяет определить время прихода сигнала от гамма-всплеска с высокой точностью. Принимая во внимание, что обсерватория работает в районе точки Лагранжа L2 системы Солнце-Земля на удалении около полутора миллионов километров, можно сказать, что открылись дополнительные возможности участия в совместной работе с другими обсерваториями и инструментами, которые работают на околоземных орбитах, а также в районе точки Лагранжа L1 (в частности, российский эксперимент КОНУС на борту спутника NASA Wind) , по триангуляции гамма-всплесков и улучшению точности их локализации.

Телескопы обсерватории обладают достаточно широкими полями зрения, что также дает возможность обнаруживать послесвечения гамма-всплесков уже в самой апертуре инструментов. Такое событие произошло 20 января 2020 года, когда обсерватория «Спектр-РГ» наблюдала область локализации гамма-всплеска спустя 13 минут после самого события. Поскольку гамма-всплеск произошел на стороне неба, относящейся к зоне ответственности немецкой стороны, то российские ученые проинформировали своих немецких коллег о такой возможности. Обработав данные телескопа СРГ/еРОЗИТА, они обнаружили неизвестный ранее объект, интенсивность которого чрезвычайно быстро падала: через 4 часа, во время следующего прохода обсерватории через эту точку, объект уже был более чем в 10 раз слабее. Этот факт был интерпретирован как первая регистрация послесвечения гамма-всплеска обсерваторией «Спектр-РГ», о чем было сообщено научному сообществу. Более того, данные обсерватории позволили локализовать гамма-всплеск с высокой точностью, что дало возможность провести его наблюдения наземными оптическими телескопами.

Таким образом, регистрация всплесков в гамма-диапазоне российским телескопом АРТ-ХС обсерватории «Спектр-РГ» открывает новые возможности и для ученых и для обсерватории, а она сама теперь полностью оправдывает свое имя: полностью оно звучит «Спектр-Рентген-Гамма».

(с) С.Мольков, ИКИ РАН, СРГ/АРТ-ХС
Художественное изображение обсерватории «Спектр-РГ» и гамма-всплеска от взрыва звезды. На вкладке показан сигнал, зарегистрированный телескопом ART-XC в диапазоне энергий 60-120 кэВ через несколько секунд после обнаружения гамма-всплеска 1 января 2020 г. обсерваторией Fermi, работающей на околоземной орбите (с) С.Мольков, ИКИ РАН, СРГ/АРТ-ХС

***

Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA/еРОЗИТА (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью.

Ожидается, что в ходе обзора неба «Спектр-РГ» обнаружит около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, сотни тысяч звезд с активными коронами и аккрецирующих белых карликов, десятки тысяч звездообразующих галактик и многие другие объекты, в том числе неизвестной природы. Эти данные исключительно важны для понимания того, как распределена материя во Вселенной, какую роль в её развитии играла темная энергия и как в ней появлялись и росли сверхмассивные чёрные дыры.

«Спектр-РГ» и (возможное) открытиe гибели звезд вблизи двух сверхмассивных черных дыр. Почти детективная история

27 декабря прошлого года в ходе сканирования всего неба рентгеновским телескопом еРОЗИТА (eROSITA) на спутнике «Спектр-РГ» был зафиксирован очень яркий рентгеновский источник на месте обычной галактики, от которой никогда не наблюдалось рентгеновского излучения на таком уровне и которая не проявляла ранее признаков наличия активного ядра. К настоящему моменту с помощью обсерватории было найдено ещё несколько подобных источников, в наблюдения за ними включаются многие космические и наземные обсерватории.

Изображение (с) И.Хабибуллин, ИКИ РАН, 2020
Схема разрушения звезды под действием приливных сил вблизи сверхмассивной черной дыры. Изображение (с) И.Хабибуллин, ИКИ РАН, 2020

Через два дня американская система обнаружения оптических вспышек на небе Zwicky Transient Facility (ZTF) автоматически зарегистрировала уярчение той же галактики в красном свете более чем в два с половиной раза. На это событие тогда никто не обратил внимания ни в знаменитом Калифорнийском технологическом институте, где обрабатываются данные ZTF, ни где-либо в другом месте в мире.

Еще через месяц рентгеновский телескоп XRT на американском спутнике Swift имени Герелса наводясь на сверхновую в направлении, близком к интересующей нас галактике, также случайно обнаружил яркий рентгеновский источник в ее направлении сравнимой мощности, но с несколько иной формой спектра.

На этой стадии российские ученые, работающие с данными СРГ/еРОЗИТА, сообщили коллегам на российских обсерваториях и астрономам всего мира о том, что по совокупности своих свойств данный объект подобен наблюдавшимся до этого случаям разрыва нормальных звезд приливными силами со стороны сверхмассивной черной дыры в центре этой галактики.

Схема этого процесса, хорошо изученного астрофизиками-теоретиками, приведена на иллюстрации. На ней показано, как нормальная звезда, движущаяся по параболической орбите вокруг черной дыры, оказывается на достаточно малом расстоянии от нее. При этом приливные силы (подобные хорошо известным приливам в океане под действием Луны) становятся настолько велики, что способны привести к потере звездой значительной части ее массы или даже полному ее разрушению.

Часть этого вещества приобретает скорость, достаточную для убегания из непосредственной окрестности черной дыры, другая же часть оказывается захваченной гравитацией и образует быстро вращающийся диск вокруг черной дыры.

Турбулентное трение между слоями газового диска приводит к отводу углового момента и продвижению вещества к черной дыре. При этом вещество в диске разогревается до десятков и сотен миллионов градусов, интенсивно излучая в рентгеновском диапазоне. В таких ситуациях светимость аккреционного диска может в десятки и даже сотни раз превышать светимость всей галактики.

На сегодняшний день, т.е. около двух месяцев с момента обнаружения, данный объект также наблюдался американской обсерваторией NuSTAR и крупнейшей рентгеновской космической обсерваторией НАСА Chandra. Поток его излучения практически не ослаб за это время. Легко оценить, какую массу вещества должна была поглотить черная дыра, чтобы обеспечить наблюдаемую лишь в рентгеновском диапазоне светимость ядра в течении почти двух месяцев. Эта величина превышает один процент массы звезды солнечного типа и заметно превосходит массу планеты или астероида.

Получить оценки подобного рода стало возможно благодаря наблюдениям на 1,6-метровом телескопе АЗТ-33 ИК Саянской солнечной обсерватории Института солнечно-земной физики СО РАН у границы с Монголией. Они позволили измерить красное смещение z=0.1, а значит и расстояние до галактики. Свет от нее шел до нас более 1 миллиарда лет. Кроме этого в спектре оптического излучения галактики наблюдатели ИКИ РАН обнаружили узкие эмиссионные линии дважды ионизованного кислорода и Бальмер-альфа линию водорода, совершенно нетипичные для такой галактики. Однако такие линии могут возникать в результате наблюдаемой активности ее ядра в рентгеновских лучах. Данные телескопа в Саянах подтверждены наблюдениями крупнейшего американского оптического телескопа Кека с диаметром зеркала в 10 метров, оснащенного адаптивной оптикой.

В ходе более чем 2-месячного обзора спутником «Спектр-РГ» четверти небесной сферы уже обнаружено несколько источников-кандидатов в события приливного разрушения звезд. О результатах первичного исследования наиболее ярких из них было сообщено в «Астрономических телеграммах» — коротких уведомлениях мирового астрономического сообщества. Такие источники очень редки и связаны с весьма редкими и экзотическими ситуациями.

18 февраля российские ученые сообщили всему миру координаты второго по яркости в рентгеновских лучах кандидата в приливное разрушение звезды сверхмассивной черной дырой. 22 февраля американская система обнаружения оптических вспышек на небе Zwicky Transient Facility (ZTF) объявила об обнаружении этой вспышки в оптических лучах.

Важнейшее отличие этих двух кандидатов в приливное разрушение звезд черными дырами от тех, что исследовались ранее и были открыты первоначально по вспышке в оптических лучах, — вспыхнувшие источники СРГ/еРОЗИТЫ излучают в рентгене в сотни и тысячи раз больше энергии, чем в оптических лучах.

Всего же за все время обзора обсерватория «Спектр-РГ» уже обнаружила и нанесла на карту более 75 тысяч источников. Большинство из них — далекие сверхмассивные черные дыры, скопления галактик, о существовании многих из которых никто не знал ранее, а также вспыхивающие звезды и белые карлики в нашей Галактике.

Ученые, работающие над обработкой уникальных данных со спутника «Спектр-РГ», благодарны специалистам НПО им. Лавочкина, ИКИ РАН и центров дальней космической связи ГК «Роскосмос» за каждодневный контроль и управление космическим аппаратом, а также прием огромного объема информации. Без работы этих специалистов оперативное получение научных результатов высочайшего класса было бы невозможно.

Обсерватории, включившиеся в наблюдения

***

Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: АРТ-ХС/ART-XC (ИКИ РАН, Россия) и eROSITA/еРОЗИТА (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью.

Ожидается, что в ходе обзора неба «Спектр-РГ» обнаружит около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, сотни тысяч звезд с активными коронами и аккрецирующих белых карликов, десятки тысяч звездообразующих галактик и многие другие объекты, в том числе неизвестной природы. Эти данные исключительно важны для понимания того, как распределена материя во Вселенной, какую роль в её развитии играла темная энергия и как в ней появлялись и росли сверхмассивные чёрные дыры.

Спектр-РГ: два месяца обзора неба телескопом АРТ-ХС

Карта обзора телескопом АРТ-ХС обсерватории «Спектр-РГ» за два месяца (8 декабря 2019 г. — 9 февраля 2020 г.), которая составлена из всех зарегистрированных за это время фотонов в жестком рентгеновском диапазоне энергий 4-30 кэВ. Красными точками отмечены области полюсов обзора, в которых экспозиция выше и соответственно количество зарегистрированных фотонов больше. Цветовая гамма от темно-фиолетового до желтого отражает количество фотонов в порядке возрастания.

Всего за два месяца покрыто 26% всего неба, что составляет более 10 тысяч квадратных градусов. Особенности рабочей орбиты аппарата таковы, что в первые два месяца, с 12 декабря «Спектр-РГ» проводит обзор с суточной угловой скоростью поворота менее градуса. Минимальная скорость оборота (0.65 град/сутки) была в последней декаде января, сейчас она начала возрастать, так что за полгода работы будет получен полный обзор.

Одна шестая часть неба с телескопом СРГ/еРОЗИТА

Прошло чуть более месяца с начала регулярного обзора всего неба обсерваторией «Спектр-РГ», двигающейся по орбите в районе точки либрации L2 на расстоянии полутора миллионов километров от Земли и вращающейся вокруг оси, направленной на Солнце. За это время телескопы обсерватории АРТ-ХС и еРозита покрыли более 1/6 части всей небесной сферы и продемонстрировали замечательные возможности «Спектра-РГ» по картографированию рентгеновского неба. К середине июня 2020 года все небо будет покрыто целиком, а через четыре года каждый участок неба будет покрыт 8 раз, увеличив чувствительность обзора в рекордные 20–30 раз по сравнению с существующим.

На рисунке показана карта половины неба в диапазоне 0.4-2 кэВ, полученная телескопом СРГ/еРОЗИТА. Оси телескопов обсерватории описывают большие круги на небе, проходящие через северный и южный полюса эклиптики. На карте четко видна темная полоса, связанная с поглощением мягкого рентгеновского излучения газом и пылью в Плоскости Галактики. Z характеризует красное смещение линий из за расширения Вселенной в спектрах объектов, находящихся на космологических расстояниях от нас. Скопление на врезке находится достаточно близко, а рентгеновские лучи от квазара прошли по пути к нам расстояние в 11.3 миллиарда световых лет.

Яркая диффузная область в правой части галактики — это знаменитый «Северный полярный шпур», область повышенной яркости радиоизлучения в форме дуги. Другая яркая область вблизи Плоскости Галактики — это мощнейшая область звездообразования в нашей Галактике, известная под названием Лебедь Х. Вне этих областей рентгеновское излучение определяется многочисленными активными ядрами галактик и скоплениями галактик.

Разрешение карты всего неба, показанной на рисунке, не позволяет увидеть на нём отдельные источники, хотя их сейчас уже зарегистрировано больше десяти тысяч. Для иллюстрации возможностей телескопа на врезке показан небольшой участок неба (2х2 градуса) с лучшим разрешением. Место, откуда заимствована врезка, показано на большом изображении как маленький квадрат вблизи северного полюса эклиптики (плоскости Солнечной системы). Именно вблизи полюсов эклиптики пересекаются индивидуальные сканы двух рентгеновских телескопов обсерватории.

Обсерватория «Спектр-РГ» продолжает сканирование, и каждый день добавляет полоску шириной 1 градус на эту карту. Темная полоса на карте связана с коррекцией орбиты спутника, когда телескоп еРОЗИТА был выключен на некоторое время.

Показанные изображения были получены в рамках российской квоты наблюдательного времени телескопа СРГ/еРОЗИТА, и проанализированы сотрудниками отдела астрофизики высоких энергий ИКИ РАН.

Источник: пресс-центр ИКИ РАН.

Обсерватория СРГ – полгода в космосе!

Полгода назад, 13 июля 2019 года, с космодрома Байконур была запущена астрофизическая обсерватория СРГ. Эти шесть месяцев были насыщены событиями: коррекции орбиты, включение и получение «первого света» телескопов ART-XC и eROSITA, их настройка и калибровка, первые научные наблюдения, выход на рабочую орбиту вокруг точки L2 и, наконец, долгожданное начало рентгеновского обзора всего неба.

На стадии летных калибровок и первых научных наблюдений в ходе ежедневных сеансов связи с борта космического аппарата было принято 360 гигабайт научных данных с помощью трех наземных станций. Первые результаты этих наблюдений были представлены на всероссийской конференции «Астрофизика высоких энергий сегодня и завтра – 2019», которая прошла в декабре в Институте космических исследований РАН.

8 декабря 2019 года обсерватория СРГ начала обзор всего неба. Совершая по шесть оборотов в день вокруг оси спутника, направленной на Солнце, телескопы обсерватории уже к июню 2020 года первый раз просканируют всю небесную сферу в рентгеновских лучах, а всего за четыре года планируется сделать восемь таких обзоров. На рисунке показана (в галактических координатах) одна шестая часть неба, для которой были получены данные в первый месяц обзора. За это время телескоп ART-XC зарегистрировал более 3 миллионов жестких рентгеновских фотонов (с энергиями от 4 до 30 кэВ) из дальнего космоса. Все они нанесены на представленную карту.

Для демонстрации огромного научного потенциала этих данных также показаны, в сильно увеличенном масштабе, два небольших фрагмента этой карты. На первом из них виден протяженный объект – горячий остаток сверхновой Кассиопея А, взорвавшейся около 300 лет назад в нашей Галактике (с помощью цветовой гаммы показано изображение, полученное телескопом ART-XC в жестком рентгеновском диапазоне, а с помощью контуров, для сравнения – изображение в мягком рентгеновском диапазоне, полученное ранее германской обсерваторией ROSAT). На второй площадке видны сразу три точечных источника: рентгеновские двойные системы V395 Car и MAXI J0911-655 в нашей Галактике, в которых вещество с обычной звезды перетекает на нейтронную звезду (причем во втором случае сильно замагниченная нейтронная звезда вращается вокруг своей оси 340 раз в секунду), а также сейфертовская галактика IRAS 09149-6206 на расстоянии 840 миллионов световых лет от нас, в которой происходит аккреция межзвездного вещества на сверхмассивную черную дыру.

Служебные системы космического аппарата СРГ и все 14 модулей телескопов ART-XC и eROSITA продолжают работать в штатном режиме, ежедневно поставляя ученым новые данные. Уникальный рентгеновский обзор неба продолжается!

ПРЕСС-КОНФЕРЕНЦИЯ О ПРОРЫВНЫХ РЕЗУЛЬТАТАХ РАБОТЫ КОСМИЧЕСКОЙ АСТРОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ «СПЕКТР-РГ»

РИА НОВОСТИ, : Пресс-конференция, в ходе которой были представлены прорывные результаты работы космической астрофизической обсерватории «Спектр-Рентген-Гамма».

http://pressmia.ru/pressclub/20191220/952604204.html

Участники:
— генеральный директор Государственной корпорации по космической деятельности «Роскосмос» Дмитрий РОГОЗИН;
— президент Российской академии наук Александр СЕРГЕЕВ.

Обсерватория была успешно выведена на орбиту ракетой-носителем «Протон-М» в июле 2019 года. В настоящее время «Спектр-РГ» находится в точке Лагранжа L2 на расстоянии 1,5 млн км от Земли и передает уникальные снимки неизвестных ранее космических объектов, которые позволят ученым понять природу темной материи, других космологических задач и нашей Вселенной.