Российская астрофизическая обсерватория «Спектр-РГ», оснащённая двумя уникальными рентгеновскими телескопами, уже почти полтора года в штатном режиме работает на орбите системы «Солнце — Земля». Об этом в интервью RT рассказал главный конструктор проекта Илья Ломакин, замначальника комплекса НПО имени Лавочкина. По его словам, комплекс уже совершил два полных обзора небосвода, благодаря чему была создана лучшая на данный момент карта космических источников рентгеновского излучения. В рамках миссии «Спектра-РГ» эти данные можно будет значительно уточнить, чтобы учёные смогли ими пользоваться как минимум несколько десятилетий, отметил специалист.
— Расскажите о проекте «Спектр-РГ». В чём его уникальность?
— Космический комплекс «Спектр-РГ» с астрофизической обсерваторией создан по заказу государственной корпорации «Роскосмос» и предназначен для наблюдения астрофизических объектов в рентгеновском диапазоне электромагнитного спектра. Для этих целей он оснащён двумя уникальными рентгеновскими телескопами, а именно: телескопом eROSITA разработки консорциума во главе с Институтом внеземной физики имени Макса Планка (Германия) и рентгеновским телескопом ART-XC совместной разработки ИКИ РАН и Федерального ядерного центра ВНИИЭФ (Саров). Эти оба телескопа размещаются на платформе «Навигатор». Всё вместе образует космический аппарат.
Головным разработчиком космического комплекса и космического аппарата выступает НПО Лавочкина, головной научной организацией является ИКИ РАН. По соглашению между госкорпорацией «Роскосмос» и Немецким космическим агентством происходит деление научных данных, полученных с телескопа eROSITA.
Если говорить про телескопы, то они и похожи, и разные. У них похожий принцип работы. Каждый телескоп представляет собой, по сути, семь маленьких телескопов. Оба телескопа оснащены рентгеновскими зеркалами косого падения, так называемой вольтеровской оптикой, и имеют по семь независимых детекторов. Но они работают в несколько отличном диапазоне. Если телескоп eROSITA работает в более мягком рентгеновском диапазоне, то телескоп ART-XC — в более жёстком. Тем самым они логично дополняют друг друга, обеспечивая более ценные научные результаты.
Космический аппарат запущен 13 июля 2019 года ракетой-носителем «Протон» и разгонным блоком ДМ, благополучно выведен на отлётную траекторию. Отделился от разгонного блока на ней, и практически сразу, через пару минут, поймали его сигнал и приступили к лётным испытаниям.
На этапе перелёта, который продлился до октября, мы проводили калибровки научной аппаратуры, тонкую настройку всего космического аппарата, служебных систем, коррекции траектории перелёта. Надо сказать, что коррекций понадобилось меньше, чем планировалось, так как выведение было достаточно точным.
— В чём особенность наблюдения и исследования космоса в рентгеновском излучении? Какие особенные данные можно получить?
— В рентгеновском диапазоне значительно лучше видны объекты, которые хорошо излучают в нём. Это чёрные дыры, ядра активных галактик, сверхмассивные чёрные дыры, звёзды с активной короной. Да, они видны и с других телескопов. Но рентгеновский диапазон значительно дополняет и расширяет наши знания.
Телескопы и космический аппарат в целом предназначены для работы в двух режимах. Первый режим — это обзор всего неба с высокой чувствительностью в угловом разрешении с целью построения сверхчёткой, сверхподробной карты звёздного неба. Никогда в мире с такой чувствительностью этого не делалось.
Второй — наблюдение в режиме трёхосной ориентации уже выбранных источников. Вот на первом этапе интересные области выявили, на втором этапе их активно пронаблюдали, поняли, что это за источники, какова их природа, каковы характеристики.
На данный момент завершено два полных обзора, построена лучшая на данный момент карта рентгеновских источников. Найдено более 1 млн неизвестных ранее источников как телескопом eROSITA, так и телескопом ART-XC. Всего будет сделано восемь сканов звёздного неба, карта будет значительно расширена, углублена и уточнена. И этой картой учёные будут пользоваться как минимум несколько десятилетий.
— Почему телескоп был выведен не на околоземную орбиту, а в так называемую точку Лагранжа? Что это за точка?
— Рабочей орбитой космического аппарата является окрестность точки Лагранжа L₂ системы «Солнце — Земля». Действительно, на ранних этапах проекта рассматривалось много орбит, но в результате на этапе эскизного проекта мы остановились именно на точке Лагранжа L₂. Это точка, удалённая на расстояние 1,5 млн км от Земли, и она очень подходит как раз для проведения таких наблюдений. Там нет резких скачков «Солнце — тень», далеко от радиационных поясов Земли. Есть свои особенности, но условия значительно мягче.
Кроме того, взаимное расположение космического аппарата, Земли и Солнца позволяют нам, не прерывая наблюдений, передавать научную информацию, не переориентируя аппарат. То есть у нас антенны всегда смотрят в сторону Земли. Расположение этих трёх объектов друг относительно друга меняется, но незначительно. Это и позволяет сделать восемь полных сканов за четыре года.
— А почему нужно совершить несколько оборотов, чтобы сделать полное сканирование? Почему одного оборота недостаточно?
— Мы накапливаем чувствительность. Сделав несколько сканов через какие-то промежутки времени, мы можем видеть и изменения: объекты погасли, объекты появились и так далее. Кроме того, это время накопления. Чем дольше вы смотрите в одну точку, тем лучше различаете детали. А мы смотрим вокруг себя на 360°.
— Были внештатные ситуации во время работы «Спектра-РГ»?
— Слава Богу, всё в штатном режиме. Космический аппарат чувствует себя превосходно. Да, у нас на борту очень сложные уникальные телескопы. Они требуют регулярной тонкой подстройки. Но это совершенно штатный режим, это предусмотрено эксплуатационной документацией. На наш взгляд, лучше работы и пожелать нельзя аппарату.
— «Спектр-РГ» продолжает линейку «Спектров». Как он дополняет, расширяет её возможности?
— Действительно, это не первый аппарат. Его предшественник — космический аппарат «Спектр-Р» (или «Радиоастрон») — закончил своё активное существование в 2019 году за несколько месяцев до запуска «Спектра-РГ». «Спектр-Р» — уникальный инструмент для астрофизиков. Это десятиметровый сложнейший радиотелескоп, построенный здесь, в НПО Лавочкина. И уникален он тем, что это, по сути, огромный интерферометр.
Это фактически стереозрение, только один глаз находится на Земле, а второй — в космосе на расстоянии до 370 тыс. км. Наблюдения одного объекта с такой базой позволяет получить его чёткие характеристики. Планировалось, что «Спектр-Р» отработает три года, а он отработал больше семи лет. Дал очень хорошие научные результаты, которые полностью до сих пор не обработаны. Они сейчас обрабатываются, это займёт ещё какое-то время. «Спектр-Р» — рекордсмен книги рекордов Гиннесса. Это самый большой космический радиотелескоп, самое высокоугловое разрешение.
15 декабря 2020 года, спустя год после начала сканирования неба, телескоп ART-XC им. М.Н. Павлинского обсерватории «Спектр-РГ» завершил свой второй обзор всего неба.
Карта всего неба, полученная по результатам двух обзоров телескопом ART-XC им. М. Н. Павлинского, обсерватория «Спектр-РГ», декабрь 2020 г.
Уникальное сочетание большого поля зрения, высокого углового разрешения и достаточно жесткого диапазона энергий позволяет телескопу ART-XC получать четкие изображения любых областей на небе, включая центральную зону нашей Галактики. На рисунке показана карта всего неба (в галактических координатах) в диапазоне энергий 4-12 кэВ, построенная по совокупности данных первого и второго обзоров. Как и ожидалось, полное количество рентгеновских источников на суммарной карте возросло почти в два раза, примерно до 1000.
Каталоги в жестких рентгеновских лучах, подобные тому, что получил телескоп ART-XC за год работы, предыдущими инструментами создавались десятилетиями. Среди зарегистрированных телескопом ART-XC источников обнаружено нескольких десятков ранее неизвестных объектов в Галактике и за ее пределами, в том числе сверхмассивные черные дыры, окруженные толщей холодного газа и невидимые в мягких рентгеновских лучах. Часть из зарегистрированных источников проявляет сильную переменность, о чем говорит сравнение карт первого и второго обзоров.
Наблюдения неба с помощью телескопа ART-XC продолжаются в штатном режиме, и в следующие 3 года обзор всего неба будет повторен еще 6 раз, что позволит обнаружить на небе еще несколько тысяч рентгеновских источников.
Телескоп ART-XC им. М.Н. Павлинского создан в России, а «Спектр-РГ» — первая отечественная обсерватория, работающая в окрестности точки Лагранжа L2, на расстоянии около полутора миллионов километров от Земли.
Российские ученые создали самую подробную карту Вселенной. Как выглядит наша Галактика изнутри, легко ли запутаться в космической паутине и что мы сможем разглядеть через гравитационные линзы? Об этом «Огонек» расспрашивал одного из самых авторитетных ученых мира — астрофизика Рашида Сюняева.
Более двух с половиной тонн научного оборудования, миллионный бюджет, десятки лет напряженной работы и возрожденный престиж российской науки. Примерно так кратко можно описать космический аппарат «Спектр-РГ», который в эту самую минуту находится далеко в космосе. Аппарат стартовал летом 2019 года с Байконура, унося на себе два телескопа — один из них российский, другой немецкий. Оба телескопа в разных режимах сканируют рентгеновское излучение, исходящее от источников в недрах Вселенной, далеко за пределами нашей Галактики.
Почему именно рентгеновское? Вообще, рентгеновская астрономия, как ни странно, появилась во многом благодаря ядерному противостоянию. В 1940-е годы американцы придумали модифицированный счетчик Гейгера, чтобы ловить в воздухе частицы высоких энергий — «эхо» атомных взрывов в атмосфере. Он, кстати, уловил такое «эхо» от первой атомной бомбы, испытанной в СССР в 1949-м. Позже ученые попробовали отправить прибор в космос и обнаружили, что наше Солнце тоже испускает рентгеновское излучение. И не только оно. Оказалось, что Вселенная наполнена неизвестными объектами, которые можно засечь только в рентгеновском спектре. Но что они собой представляют, долгое время оставалось загадкой. Было ясно: такие частицы испускают источники, нагретые до гигантских температур, вплоть до нескольких миллионов градусов. Сегодня понятно, что речь идет о самых крупных объектах нашей Вселенной — скоплениях галактик, мощных черных дырах, вспышках сверхновых и так далее.
Через четыре года, собрав всю полученную «Спектром-РГ» информацию, российские ученые создадут окончательный вариант самой точной трехмерной карты Вселенной, куда будут нанесены крупные внегалактические объекты, подобные материкам на гигантской географической карте.
Помимо этого, «Спектр-РГ» будет решать огромное количество других научных задач, важнейшая из которых связана с главной загадкой современной науки: распределением невидимой темной материи и действием темной энергии — некой силы, управляющей временем и пространством. Это настолько продвинет нас в понимании устройства Вселенной, что некоторые эксперты называют происходящее третьей астрономической революцией, имея в виду, что первая произошла с появлением оптических приборов, а вторая — с выходом человечества в ближний космос. А узнать, не завышены ли ожидания, можно только у одного человека, который больше других знает и о проекте, и о Вселенной.
—Рашид Алиевич, вы всю жизнь изучали Вселенную, именно этому посвящена работа уникальной российско-немецкой обсерватории «Спектр-РГ» (СРГ), которая скоро завершит второй обзор всего неба. Что мы узнали такого, чего не знали раньше?
— Новые результаты будут опубликованы в «Nature» в декабре, пока я могу сказать, что они связаны с активностью гигантской черной дыры в центре нашей Галактики. Сегодня эта черная дыра и падающее на нее вещество (имеется в виду вещество, которое дыра затягивает внутрь.— «О») наблюдаются как источник слабого переменного рентгеновского излучения. Но миллионы лет назад в центре Галактики произошла ярчайшая вспышка, которая привела к выбросу громадного количества газа на расстояния в десятки тысяч световых лет от этой черной дыры и зоны активнейшего звездообразования вокруг нее. В это время светимость центра Галактики превышала современную в сотни миллионов, а возможно, и в миллиарды раз. Наш телескоп изучает свойства выброшенного газа, видит мощные ударные волны, нагревающие газ до температур в миллионы градусов.
—Когда вы говорите, что благодаря орбитальной обсерватории СРГ впервые создается столь подробная карта Вселенной, что имеется в виду? И как эта карта создается?
— Для начала скажу, что речь идет о двух совершенно уникальных рентгеновских телескопах с оптикой косого падения: АРТ-ХС и еРозита. Они установлены на борту орбитальной астрофизической обсерватории «Спектр-РГ». АРТ-ХС сделан в России, а еРозита — в Германии. Роскосмос впервые в отечественной историизапустил аппарат в точку Лагранжа (L2) — в 1,5 млн километров от Земли, где Солнце, Земля и Луна всегда находятся с одной стороны от нашей обсерватории. Каждые полгода наш спутник делает оборот вокруг L2 и при этом получает полную карту неба. Всего за 4 года работы будет сделано восемь таких карт, которые дополнят и уточнят друг друга.
Уже сейчас мы открыли порядка миллиона рентгеновских источников. Это больше, чем видели все рентгеновские телескопы за всю историю астрономии! И три четверти из них — это сверхмассивные (миллионы и миллиарды солнечных масс) черные дыры в квазарах и ядрах активных галактик. Сейчас завершается второе сканирование неба, и мы получим возможность вести поиск очень интересных явлений, например, приливных разрушений звезд сверхмассивными черными дырами.
— Что это такое?
— Иногда нам удается стать свидетелями настоящих космических драм. Мы обнаружили десятки объектов, которые за полгода стали ярче в десять раз. Это значит, что они хорошо «покормились» — может быть, мимо пролетела звезда, которая подошла к черной дыре слишком близко и была разорвана приливными силами. При этом часть вещества уходит в бесконечность, а часть оказывается захваченной черной дырой, поэтому светимость аккреционного диска вокруг нее резко возрастает (аккреционный диск — вещество, стягивающееся в черную дыру и разогревающееся до огромных температур.— «О»). Для того чтобы черная дыра на расстоянии в миллиард световых лет «светила» с такой силой, она должна каждые 10 минут поглощать массу порядка массы Земли.
—Какие необычные объекты и зоны во Вселенной наиболее интересны ученым?
— На самом деле их очень много. Например, так называемая дыра Локмана. С самим Джеем Локманом я знаком, он был совсем молодым, когда открыл область неба с минимальным количеством нейтрального водорода на луче зрения. Именно поэтому она прозрачна для наблюдения мягкого рентгеновского излучения внегалактических объектов. Уже сейчас мы обнаружили там около 9 тысяч рентгеновских источников, большинство из которых находятся далеко за пределами Галактики, они как бы просвечивают сквозь нее.
Но главное для нас сейчас — это использование гигантского количества открываемых рентгеновских источников в интересах космологии — науки о Вселенной. Мы мечтаем получить новые данные о заполняющих Вселенную темной энергии и темном веществе, физическая природа которых пока не известна. Так, например, на первой рентгеновской карте всего неба телескопа еРозита мы видим около 20 тысяч скоплений галактик, около 80 процентов массы каждого из которых составляет темное вещество. Громадный набор данных СРГ позволяет исследовать, как меняется плотность этих самых массивных многочисленных объектов во Вселенной. Мы узнаем, когда они появились, как со временем росло их количество, как они сливались друг с другом. Горячий газ, излучение которого мы наблюдаем, позволяет следить, как меняется гравитационный потенциал скоплений, определяемый невидимым темным веществом, масса которого растет со временем.
— Почему это важно?
— Громадный гравитационный потенциал приводит к тому, что многие скопления становятся сильными гравитационными линзами (такие линзы меняют направление электромагнитного излучения, как обычная линза — светового луча, то есть через них словно через увеличительное стекло можно детально исследовать самые далекие галактики во Вселенной.— «О»). Сначала изображения объектов усиливаются такой гравлинзой, а затем лучшими в мире оптическими телескопами. Мы рассчитываем, что среди открываемых нами скоплений галактик будут найдены многие тысячи сильных гравлинз.
Назад в будущее
—Работа по проекту СРГ велась более 15 лет и потребовала больших усилий российской промышленности. Можно ли говорить о возрождении наукоемкой промышленности в России?
— АРТ-XC — первый российский рентгеновский телескоп с оптикой косого падения международного класса. Его создание стало возможным благодаря работе большого количества людей. Лидер этого коллектива — Михаил Павлинский, который ушел из жизни в июле этого года в возрасте 60 лет и чьим именем телескоп назван сейчас. Детекторы АРТ-XC были полностью разработаны и изготовлены в Институте космических исследований (ИКИ) РАН, а конструкция телескопа изготовлена в знаменитом Федеральном ядерном центре в Сарове. За создание позиционно чувствительных детекторов и их электроники отвечали молодые выпускники МИФИ во главе с Василием Левиным.
— Но рентгеновские зеркала вы взяли американские?
— У нас есть отечественные рентгеновские зеркала с оптикой косого падения, и наша страна может делать полностью свои рентгеновские телескопы. Но тесты показали, что зеркала Космического центра НАСА им. Маршалла показывают несколько лучшие результаты.
Надо признать, что в области космической астрофизики и исследования Солнечной системы (во многом благодаря поддержке РАН и Роскосмоса) еще со времен СССР идет плодотворное сотрудничество со многими странами Европы и США. По нашему проекту мы широко сотрудничаем с учеными Германии, и это полезно для обеих сторон. У меня впечатление, что никто и нигде не будет всерьез останавливать научное сотрудничество в чисто научном космосе. В значительной мере это вопрос конкурентоспособности: смогут ли наши ученые предлагать интересные задачи для сотрудничества, а нашe правительство и промышленность — хорошие условия для него. Ни одна страна в мире не может осилить сразу все работы по всем интересующим ученых направлениям.
Возвращаясь к нашей промышленности, добавлю, что большая группа специалистов в НПО им. Лавочкина курирует работу СРГ ежедневно. Именно они создали замечательную платформу «Навигатор», на которой установлены наши рентгеновские телескопы. Эта платформа уже была испытана в космосе, на ней летали «Радиоастрон» и приборы двух метеорологических спутников. Надеюсь, что «Навигатор» будет успешно использоваться и в дальнейшем.
— А кто принимает сигнал на земле?
— Здесь громадную роль играют центры дальней космической связи России. Ежедневно по 5 часов в день сеансы связи с СРГ проводят поочередно 64-метровая антенна в Медвежьих Озерах под Москвой и 70-метровая антенна в Уссурийске недалеко от границы с Китаем и Северной Кореей. Они принимают данные и пересылают их по каналам связи в ИКИ для дальнейшей передачи ученым России и Германии. С помощью антенн в этих центрах, а также благодаря работе Байконура ученые проверяют работу всех систем обсерватории и посылают команды и задания на следующие сутки работы.
— Вы присутствовали при запуске аппарата?
— Когда вспыхнуло пламя и ракета «Протон» с нашей обсерваторией начала медленно подниматься, это было волнующее зрелище. Я ездил на Байконур и за две недели до запуска. Ракету уже установили на стартовом комплексе, вдруг выяснилось, что у нее есть небольшая, но достаточно серьезная проблема. Как бы дорого это ни было, ракету сняли, отвезли назад в цех и работали над ней в срочном порядке две недели. В итоге запуск прошел чудесно. После ко мне подошел один из ведущих конструкторов завода им. Хруничева (завод — создатель «Протона-М».— «О») и сказал: «Поздравляю! Если б вы знали, сколько людей не спали эти две недели, чтобы все прошло хорошо». Плохо спал в те дни и я, а когда давал комментарии в ходе запуска, осознал, что никогда не видел себя на экране таким бледным.
—В общем, это неудивительно, учитывая, сколько времени вы боролись за этот проект.
— Да, отсчет можно вести с 1987 года. Тогда в Москве в честь 30-й годовщины запуска первого спутника ЦK КПСС разрешил провести совещание с участием всех основных космических агентств и ведущих ученых мира в области космических исследований. Проект, который мы предложили, был поддержан 26 выдающимися физиками нашей страны, включая таких гигантов науки, как мой учитель академик Зельдович, академик Сахаров и директор ИКИ, в то время академик Сагдеев.
Заглянуть за край
— То, что вы видите на карте, соответствует предсказаниям, которые были у астрофизиков до сих пор?
— С некоторой точностью, и этим уточнением мы занимаемся.
— Что вы делаете с гигантским объемом полученной информации?
— Понятно, что один человек не может вручную перебрать миллион источников, которые мы уже видим на карте неба, полученной телескопом СРГ/еРозита. Для этого нужны квалифицированные, инициативные и способные люди, нужно большое количество хороших компьютеров, которых у нас не хватает. Но так быть не должно: СРГ дает интереснейшие данные, и их анализ должен производиться учеными нашей страны, молодежь должна иметь возможность делать открытия мирового класса. Более того, стоимость этих компьютеров ничтожна по сравнению со стоимостью всего проекта. К тому же у нас не хватает архивов для того колоссального количества данных, которые приходят каждый день. Мы очень рассчитываем, что Министерство науки и образования поможет в этом вопросе. Именно из-за недостатка компьютеров и современных оптических телескопов в стране мы сейчас концентрируемся на поиске самых далеких объектов во Вселенной среди миллиона уже открытых нами, вместо того чтобы расширять область исследования.
Обработкой данных помимо уже известных специалистов в данной области занимается много молодежи, что принципиально важно. Например, молодые выпускники МФТИ, МГУ, МИФИ и других вузов. Отмечу группу аспирантов и студентов факультета вычислительной математики и кибернетики МГУ, работающих под руководством Александра Мещерякова. С помощью программы машинного обучения и нейронной сети «СРГz» они «перелопачивают» на компьютерах все обнаруженные СРГ объекты, ищут самые интересные, самые далекие из них, а затем передают информацию астрономам, работающим на четырех отечественных оптических телескопах, для более подробного изучения.
Буквально на днях мне сообщили из Казанского федерального университета, что один из рентгеновских источников, отобранных по программам «СРГz», оказался гигантской черной дырой массой более 100 млн солнечных масс. Этот квазар светил, когда еще не существовало Земли, когда Вселенная была раз в 10 моложе, чем сейчас, и испущенные им рентгеновские и оптические фотоны «летели» к нам 12 млрд лет. Естественно, возникает вопрос: как эта черная дыра успела нарастить столь громадную массу менее чем за миллиард лет?
— Поражает, что такие открытия можно делать на «всего лишь» 1,5-метровом телескопе КФУ.
А ведь 8 лет назад ЮЕО приглашала Россию присоединиться к этому международному проекту, но что-то пошло не так…
— Можно ли, глядя на новую рентгеновскую карту неба, наглядно описать, как выглядит наша Вселенная?
— Да, скорее всего еще через три года в результате восьми обзоров всего неба в рентгеновских лучах мы получим достаточное количество скоплений галактик (речь идет о 100 тысячах) и будем пытаться построить трехмерную картину их распределения во Вселенной. Численное моделирование предсказывает, что в узлах космической паутины (по одной из теорий во Вселенной есть некие плотные структуры из газа и пыли, похожие на нити паутины.— «О») находятся именно скопления галактик. Надеемся это увидеть на тонких срезах полученной трехмерной картины. Более того, мы планируем и поиск следов «барионных акустических осцилляций» (колебания плотности обычной материи, вызванные звуковыми волнами в ранней Вселенной.— «О») в трехмерном распределении не только скоплений галактик, но и гораздо более многочисленных квазаров. И потом, если есть наша Вселенная, почему не быть где-то другой? Почему наша должна быть одна?
Впрочем, я всю жизнь работаю на грани теории и эксперимента и думаю в первую очередь о том, что реально можно увидеть и в некотором смысле «пощупать». Так, например, мне было очень интересно работать над статьей с профессором МГУ (тогда еще совсем молодым ученым) Николаем Ивановичем Шакурой про аккрецию на черные дыры (самая цитируемая статья в мировой теоретической астрофизике.— «О») не только потому, что речь идет об удивительных объектах — черных дырах. Нас поражало, что аккреционный диск из вещества делал ее не только «видимым», но и ярким объектом в рентгеновских и даже оптических лучах, позволял оценить ее массу и ряд других физических параметров. Это открывало возможность искать черные дыры и в нашей Галактике, и во всей Вселенной. А сегодня, 47 лет спустя после этой публикации, СРГ за два скана неба уже нанес на карту неба более миллиона только сверхмассивных черных дыр.
Сейчас благодаря работе наших рентгеновских телескопов получены картины удивительной красоты. Например, мы детально исследовали богатейшее скопление галактик в созвездии Волосы Вероники. Его масса составляет 10 в 15-й степени масс Солнца. Как и все скопления, оно на 80 процентов состоит из темного вещества, а галактики в нем (несколько тысяч) обеспечивают всего 4 процента массы, остальное — горячий межгалактический газ с температурой 70–90 млн градусов и с плотностью всего в один протон и электрон на каждые 100 кубических сантиметров.
На полученном изображении мы видим удивительные по масштабности события: это скопление галактик готовится поглотить своего ближайшего соседа (скопление меньшей массы), в газе возникают ударные волны, происходит ускорение космических лучей и многое другое.
— Как с помощью рентгеновского телескопа вы изучаете распределения темного вещества?
— Благодаря численному моделированию на суперкомпьютерах мы знаем, что темное вещество из пространства между скоплениями галактик широкими рукавами втекает в сами скопления. Вместе с частицами невидимого для нас темного вещества туда же втекает и газ. А этот газ мы надеемся увидеть по его рентгеновскому излучению. Более того, мы стараемся оценить, сколько именно вещества втекает, какое давление газа создается при этом, как в нем возникают ударные волны. Горячий газ, как и галактики, для нас являются как бы пробными частицами, позволяющими почувствовать гравитационное воздействие на них громадного числа невидимых частиц темного вещества. Периферия скоплений галактик представляет для нас особый интерес. Важно найти филаменты (гипотетические плотные узкие нити космического вещества.— «О»), вдоль которых в скопление втекают темное вещество и газ, и измерить их параметры.
—Эти рукава темной материи подтверждают гипотезу, что наша Вселенная по структуре похожа на гигантскую трехмерную паутину?
— В целом да, ее узлы представляют собой скопления темной материи, проявляющие себя в виде скоплений галактик и атмосферы горячего газа. А между скоплениями, по теории, должны возникать нитевидные структуры, те самые филаменты. Именно в точках пересечения этих нитей находятся скопления галактик. Существование такой картины предсказывают численные расчеты роста возмущений плотности даже во Вселенной, заполненной лишь темным веществом». Наличие барионного вещества (привычная нам форма вещества, отличная от темной материи.— «О»), проявляющего себя в виде разреженного газа и звезд в галактиках, открывает возможность подтвердить наблюдениями эту картину.
— Успехи современной астрофизики во многом связаны с теорией, названной «эффектом Сюняева — Зельдовича». Как вы к ней пришли?
— Астрофизика и особенно космология хороши тем, что могут предоставлять теоретикам физические условия, практически недостижимые в земных лабораториях: высокие и сверхнизкие температуры, громадные плотности энергии излучения и вещества, колоссальные магнитные поля или, наоборот, крайне разреженную плазму с плотностью всего лишь в одну частицу в десятках кубических метров, но при громаднейших размерах объектов. При этом хорошо известные физические процессы могут приводить к совершенно неожиданным следствиям. Когда мы с Яковом Борисовичем Зельдовичем предложили экспериментаторам искать проявления эффекта, называемого теперь SZ-effect, в него мало кто поверил.
—Идолгое время это оставалось теорией…
— Да, экспериментаторы старались, но чувствительности детекторов не хватало еще лет тридцать. Хотя сейчас этим методом открыты многие тысячи скоплений галактик, по нему опубликованы многие сотни экспериментальных и теоретических статей. Помогли известный всем космологический спутник ПЛАНК, замечательные телескоп на Южном полюсе Земли и Атакамский космологический телескоп в Чили.
— Примерно 10 лет назад вас избрали членом Американского философского общества. Что там сегодня обсуждают?
— Это достойнейшее место, начало которому положили еще отцы — основатели Америки, в том числе Томас Джефферсон и Бенджамин Франклин. Два раза в год (когда удается) я бываю на собраниях, где обсуждают чрезвычайно широкий круг тем. Мне, например, запомнилось выступление профессора Принстонского университета, который изучал культуру мигрантов в беднейших районах Лос-Анджелеса. В Америке многие годы считалось, что все приехавшие должны немедленно забыть свои корни и выучить английский язык, чтобы общаться только на нем. Но оказалось, что в тех семьях, где говорили на родном языке, дети гораздо реже попадают в банды, чем там, где родители пытаются говорить с ними на корявом и бедном английском. Для проявления личности, для установления доверительных отношений с детьми принципиально важно, чтобы взрослые говорили на красивом и богатом языке, чтобы они могли точно выразить свою мысль, дать развернутый совет и так далее. А английский дети освоят, столь велико влияние школы, интернета и массовой культуры. Меня это поразило.
— В одном из интервью вы сказали, что мы станем свидетелями научно-технической революции. Что вы имели в виду?
— Мы уже давно переживаем настоящую научно-техническую революцию: например, спокойно говорим из разных стран по Zoom, а я прекрасно помню, как в июле 1960 года, когда поступил в московский Физтех, стоял в двухчасовой очереди на Центральном телеграфе, чтобы позвонить в Ташкент и сообщить родителям, что меня приняли. Жизнь стала другой, а через сто лет она будет еще более интересной, чем сейчас.
В ближайшее время обсерватория «Спектр-РГ» — главный научный космический проект России, завершит второй полный обзор неба в рентгеновском диапазоне. С помощью телескопов на его борту учёные уже получают уникальные данные о нашей Вселенной.
На сайте космической обсерватории «Спектр-РГ» доступна интерактивная карта всего неба, построенная по данным российского телескопа ART-XC.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Неделю назад телескопы ART-XC и eROSITA (еРОЗИТА) на борту орбитальной обсерватории «Спектр-РГ» завершили сканирование всего неба в рентгеновских лучах. Об этом уже сообщалось, но работа по построению карты и определению числа источников, обнаруженных в ходе сканирования, продолжается. Как было договорено за годы до запуска, российские ученые обрабатывают данные с одной стороны неба, а немецкие ученые (телескоп еРОЗИТА создан в Германии) работают с рентгеновскими фотонами, пришедшими с другой половины неба. Карта всего неба, построенная учеными двух научных консорциумов и показанная на иллюстрации, оказалась удивительно информативной.
В самом центре карты находится сверхмассивная черная дыра с массой 4 миллиона солнечных масс (это достаточно слабый рентгеновский источник). По экватору картинки проходит плоскость нашей Галактики Млечный Путь, который мы можем наблюдать в полной красе на юге нашей страны в безлунную летнюю ночь. Но на рентгеновской карте Млечный Путь выглядит как темная полоса из-за того, что молекулярный газ и пыль в плоскости Галактики поглощают рентгеновские лучи. Синие точки, расположенные в этой области, демонстрируют наличие в Млечном Пути большого числа ярких и мощных источников рентгеновского излучения: это рентгеновские пульсары, аккрецирующие черные дыры в двойных звездных системах, остатки вспышек сверхновых (результат недавней гибели звезд).
Эта карта многоцветная, и различные цвета сразу позволяют судить о характерной энергии приходящих фотонов. На ней представлены все рентгеновские фотоны (а их 400 миллионов), зарегистрированные детекторами еРОЗИТЫ в диапазоне энергий от 300 электрон-вольт (эВ) до 2.3 килоэлектрон-вольт (кэВ) за полгода непрерывного сканирования неба. Красный цвет соответствует фотонам с энергией 0.3–0.6 КэВ, зеленый — 0.6–1 кэВ, синий — 1–2.3 кэВ.
Для простоты понимания можно сказать, что эти три диапазона энергий соответствуют, например, температуре излучающего горячего вещества от 3 миллионов до 6 миллионов градусов (красный цвет); от 6 до 10 миллионов градусов (зеленый) и от 10 до 25 миллионов градусов (синий цвет).
Хорошее угловое разрешение ( ~ 20 угловых секунд) и высочайшая чувствительность телескопа еРОЗИТА позволили ей нанести на карту более миллиона компактных источников и десятки тысяч протяженных. Такое количество невозможно продемонстрировать на одном изображении. Лишь самые яркие из источников видны на карте как точки. Но и их немало: многие тысячи.
Уже первый обзор неба спутником «Спектр-РГ» позволил телескопу еРОЗИТА построить карту, содержащую почти в 10 раз больше источников и в четыре раза более чувствительную, чем бывшая лучшей в мире карта немецкого спутника РОСАТ, полученная в 1990 году. Всего за полгода сканирования неба еРОЗИТА смогла удвоить полное число источников, зарегистрированных всеми спутниками в мире за 60 лет рентгеновской астрономии. «Эта карта всего неба полностью меняет наш взгляд на высокоэнергичные процессы во Вселенной», — говорит Петер Предель (Peter Predehl), научный руководитель телескопа еРОЗИТА в Институте внеземной физики Общества имени Макса Планка (МПЕ, Германия). — «Мы видим такое богатство деталей — красота этого изображения просто поражает».
Эта карта позволяет видеть, как сотни вспышек сверхновых, а возможно, и активность, время от времени, сверхмассивной черной дыры в центре Галактики, приводят к фонтанирующим выбросам горячего газа с температурами до 10 миллионов градусов из плоскости нашей Галактики (яркие зоны выше и ниже плоскости Галактики). В излучение зон с более низкой температурой вносят вклад и около двухсот тысяч достаточно близких от нас звезд с коронами гораздо более мощными, чем у нашего Солнца.
Но три четверти (!) всех объектов на этой карте — это далекие квазары и ядра активных галактик, т.е. сверхмассивные черные дыры, излучающие за счет падения на них вещества. Они находятся далеко за пределами Млечного Пути на расстояниях в сотни миллионов и миллиарды световых лет от нас.
Среди вновь открытых объектов на этой карте уже найдены квазары с красными смещениями более чем 6 (все линии в их спектрах смещены в красную сторону более 7 раз из-за расширения Вселенной). Мы видим на карте около 20 тысяч скоплений галактик, заполненных загадочным «темным веществом».
На то, чтобы с помощью оптических телескопов получить полную информацию о красных смещениях большинства квазаров и скоплений галактик, открытых телескопом еРОЗИТА, потребуются годы. «Но уже сейчас мы сможем начать использовать этот набор объектов, находящихся на гигантских расстояниях, для определения времени их появления этих во Вселенной и уточнения ее свойств и параметров, т.е. в целях космологии», — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев.
Телескопы обсерватории «Спектр-РГ» продолжают работу. Планируется, что через несколько дней она начнет второй обзор неба. Ожидается, что он продлится до конца года. Всего планируется получить еще семь таких карт еРОЗИТЫ. На это уйдет еще три с половиной года. Суммарная карта будет примерно в 5 раз (!) чувствительнее первой, а число источников на ней должно возрасти более чем в 10 раз. «Тогда появится уверенность, что наши карты и каталоги источников будут использоваться астрофизиками и космологами всех стран мира как минимум следующие двадцать лет, пока не появятся более совершенные рентгеновские телескопы, и ученые не решат, что пора делать новую, еще более чувствительную карту рентгеновского неба», — отмечает Рашид Сюняев.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
В работе астрофизиков России и Германии, работающих сейчас на удалении от своих рабочих мест, выдающееся событие: телескопы ART-XC и eROSITA на борту орбитальной обсерватории «Спектр-РГ» завершили свой первый обзор всего неба в рентгеновских лучах.
К вечеру 11 июня телескоп СРГ/еРозита завершил построение карты, охватывающей всю небесную сферу, площадь которой составляет 41 тысячу 253 квадратных градуса. На это ушло полгода. Изображения половины неба, за обработку и анализ которой отвечают российские астрофизики, приведены на рисунках, на которых показаны карты в двух энергетических диапазонах: 0.3-0.7 кэВ и 0.7-2.3 кэВ. В них чувствительность телескопа СРГ/еРозита максимальна. На этих картах зарегистрировано около полумиллиона рентгеновских источников.
Карта половины всего неба в диапазоне 0.3–0.7 килоэлектрон-вольта, полученная телескопом СРГ/еРозита в ходе первого обзора неба. Изображение: ИКИ РАН
На карте в более мягком диапазоне энергий 0.3–0.7 кэВ хорошо видны остатки вспышек сверхновых (следы гибели звезд) и излучение «теплого» межзвездного газа с температурой в сотни тысяч градусов Кельвина, а также относительно близкие звезды с коронами, намного более мощными чем у Солнца. Их более ста тысяч.
Обращает на себя внимание Северный Полярный Шпур — ярчайшая и самая протяженная в мягких рентгеновских лучах область нашей Галактики. Хорошо видна темная полоса, протянувшаяся вдоль плоскости нашей Галактики, где поверхностная яркость рентгеновского излучения меньше, чем в других частях карты. Это связано с поглощением мягких рентгеновских лучей газом и пылью в диске нашей Галактики.
«Уже сейчас понятно, что данные телескопа СРГ/еРозита на борту «Спектра-РГ» позволят нам уточнить количество атомарного и молекулярного газа и пыли в различных направлениях на небе», — говорит академик Рашид Сюняев, научный руководитель проекта «Спектр-РГ», научный руководитель отдела астрофизики высоких энергий ИКИ РАН.
Карта половины всего неба в диапазоне 0.7–2.3 килоэлектрон-вольта, полученная телескопом СРГ/еРозита в ходе первого обзора неба. Изображение: ИКИ РАН
На карте в диапазоне 0.7–2.3 кэВ в основном проявляют себя внегалактические объекты. Мы видим сотни тысяч ядер активных галактик и квазаров, излучение которых связано с аккрецией (падением) вещества на сверхмассивные черные дыры, и тысячи массивных скоплений галактик, заполненных в основном загадочным «темным веществом» и горячим межгалактическим газом. Абсолютное большинство этих объектов находятся на космологических расстояниях от нас, превышающих миллиарды световых лет.
В этом диапазоне мы также видим рентгеновские пульсары, аккрецирующие белые карлики и многие другие типы галактических источников рентгеновского излучения.
Большинство из детектируемых объектов наблюдаются впервые. Точные измерения их положений, с точностью порядка нескольких угловых секунд, позволяют отождествить заметную часть открываемых объектов с источниками, известными в оптическом или инфракрасном диапазонах спектра. На большинство рентгеновских источников телескоп СРГ/еРозита «смотрел» лишь по 150–300 секунд.
Яркое излучение в центральной части карты связано с излучением горячего газа и молодых объектов различной природы в областях звездообразования в созвездии Лебедя, включая известнейший остаток вспышки сверхновой Петля в Лебеде, ряда планетарных туманностей и скоплений молодых звезд, а также известнейших рентгеновских источников, таких как черная дыра Лебедь X-1 и нейтронные звезды Лебедь X-2 и X-3, а также знаменитая далекая радиогалактика Лебедь А.
Из-за эффектов проекции на приведенных выше картах почти не видна зона центра Галактики, представляющая огромный интерес для астрономов. Она показана ниже, размер изображения 40х20 градусов.
Карта области Центра Галактики и Галактической плоскости размером 40х20 градусов в диапазоне 0.3–2.0 кэВ. Изображение: ИКИ РАН
Сверхмассивная черная дыра Sgr A* находится на правой границе этой карты в плоскости Галактического экватора. Эта область богата рентгеновскими источниками разной природы, но сильно поглощена в мягких рентгеновских лучах из-за высокой концентрации молекулярного газа. Ярчайшие источники в этой области выглядят сильно размытыми из-за их высокой яркости.
Первая же карта неба в рентгеновских лучах телескопа СРГ/еРозита превысила по чувствительности, угловому разрешения и числу наблюдаемых источников карту знаменитого германского спутника ROSAT, которая в течение 30 лет была лучшей в мире.
Телескопы обсерватории СРГ сканируют небо вдоль большого круга на небесной сфере, плоскость которого поворачивается примерно в соответствии с движением Земли вокруг Солнца. Все сканы пересекаются в полюсах эклиптики, где рентгеновская карта неба имеет наибольшую чувствительность. Плотность объектов, детектируемых телескопом СРГ/еРозита в этих зонах, достигает порядка 700 источников на квадратный градус.
Телескопы обсерватории «Спектр-РГ» продолжают работу. Планируется, что после маневра коррекции орбиты, намеченного на середину июня, и коротких калибровочных наблюдений, необходимых для подтверждения параметров спектрального отклика телескопов, обсерватория начнет второй обзор неба.
Планируется получить еще 7 таких карт в течение следующих трех с половиной лет. Суммарная карта будет намного более подробной, чем первая, за счёт постоянного увеличения экспозиции и чувствительности, конечно при условии непрерывной и качественной работы спутника и его телескопов.
«Тогда появится уверенность, что наши карты и каталоги источников будут использоваться астрофизиками и космологами всех стран мира, как минимум, следующие двадцать лет, — пока одно из космических агентств не решит, что пора делать новую, еще более подробную карту рентгеновского неба», — говорит Рашид Алиевич.
Ожидается, что второй обзор неба продлится до конца года. Сумма данных двух обзоров позволит более чем вдвое увеличить число детектируемых рентгеновских источников, а сравнение карт позволит исследовать переменность источников и открывать новые уникальные объекты на небе.
Предприятия ГК «Роскосмос» ведут управление спутником, антенны дальней космической связи ежедневно осуществляют прием научных данных и посылают команды на спутник и научные приборы, находящиеся на расстоянии в полтора миллиона километров от Земли (в четыре раза дальше Луны). Ученые ИКИ РАН в удаленном режиме ведут обработку научных данных на мощных компьютерах в центре данных проекта. Карту на противоположной половине неба строят ученые германского Института внеземной физики Общества имени Макса Планка. Вместе две эти «половинки» покрывают всю небесную сферу.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
9 июня в обращение вышел почтовый блок с 3 марками «Россия — космическая держава»
Россия имеет богатые традиции и колоссальный опыт в области исследования космоса и, бесспорно, является мировым лидером в освоении космического пространства. Наша страна осуществила первый запуск космического корабля с человеком на борту в космическое пространство, первый выход человека в космос, первое посещение окололунного пространства.
Полвека назад советский «Луноход» стал первым в мире планетоходом, который успешно работал на поверхности Луны. Автоматическая межпланетная станция «Луна-17» с «Луноходом-1» стартовала 10 ноября 1970 года. Луноход проработал на спутнике Земли в 3 раза дольше первоначально рассчитанного ресурса — 3 месяца. Он проехал 10 540 м, передал на Землю 211 лунных панорам и 25 тысяч фотографий.
13 июля 2019 года состоялся успешный пуск ракеты-носителя «Протон-М» с космической астрофизической обсерваторией «Спектр-РГ». 21 октября 2019 года аппарат завершил перелёт в окрестность точки либрации L2 системы Солнце — Земля. Проведение астрофизических исследований запланировано в течение 6,5 лет, из которых 4 года — в режиме сканирования звёздного неба, а 2,5 года — в режиме точечного наблюдения объектов во Вселенной по заявкам мирового научного сообщества.
В настоящее время ведутся разработки нового перспективного пилотируемого корабля «Орёл». Первый пуск запланирован на 2023 год, в 2024 году — со стыковкой с МКС, а в 2025 году начнутся пилотируемые полёты.
На почтовом блоке из трёх марок изображены достижения российской космонавтики: первый самоходный аппарат «Луноход-1» (1970), астрофизическая обсерватория «Спектр-РГ» (2019), перспективный пилотируемый корабль «Орёл» (2025).
Дополнительно к выпуску почтового блока АО «Марка» изданы конверты первого дня и изготовлены штемпеля специального гашения для Москвы, Санкт-Петербурга, Красноярска, Астрахани, Архангельска, Калуги, Самары, Кемерова, Омска, Евпатории Республики Крым, Байконура, Мирного Архангельской области, Звёздного Городка, Королёва Московской области и Циолковского Амурской области, а также выпущена художественная обложка, внутри — почтовый блок, виньетка и конверт с гашением для Байконура. Кроме того, выпущена художественная обложка с сувенирным блоком, изготовленным с использованием технологии стерео-варио.
Художник-дизайнер: А. Московец.
Номинал: по 30 р.
Размер блока: 72×130 мм; размер марок в блоке: 50×37 мм.
Тираж: 45 тыс.
Как сообщил научный руководитель проекта Рашид Сюняев, эту работу нельзя прерывать ни на один день.
МОСКВА, 28 марта. /ТАСС/. Специалисты НПО им. С. А. Лавочкина и Центра дальней космической связи продолжают ежедневные работы с космической обсерваторией «Спектр-РГ», несмотря на пандемию коронавируса. Об этом сообщил ТАСС научный руководитель проекта, академик РАН Рашид Сюняев.
«Все астрофизики проекта благодарны сотрудникам НПО имени Лавочкина за управление спутником и коллективам Центров дальней космической связи в Медвежьих Озерах, Уссурийске и Байконуре, которые обеспечивают ежедневную посылку команд на спутник и телескопы», — отметил Сюняев. Академик подчеркнул, что круглосуточную работу «Спектра-РГ» нельзя прерывать ни на один день, иначе на первой карте рентгеновского неба, которую ученые рассчитывают получить к концу июня, останутся пустые полосы.
В свою очередь, специальные группы ученых и инженеров в ИКИ и Институте Внеземной Физики им. Макса Планка (Германия) заранее готовят наборы программ для управления телескопами. Прямые контакты между учеными из РФ и Германии запрещены, поэтому все переговоры проходят с помощью интернета.
По словам академика, каждые сутки также продолжается прием данных с работающего аппарата. «Полную поддержку работе нашей орбитальной обсерватории оказывают Роскосмос и Академия наук России», — подчеркнул научный руководитель проекта.
В четверг генеральный директор Роскосмоса Дмитрий Рогозин поручил гендиректору НПО им. С. А. Лавочкина Владимиру Колмыкову обеспечить бесперебойную работу по оперативному управлению космическим аппаратом «Спектр-РГ». Ранее из-за усиления пандемии коронавируса Европейское космическое агентство приостановило осуществление ряда научных миссий, в том числе по запущенному в 2016 году совместно с РФ орбитальный модуль TGO миссии «ЭкзоМарс».
Вспышка вызываемого новым коронавирусом заболевания была зафиксирована в конце 2019 года в Центральном Китае, позднее распространилась на 160 стран и была признана Всемирной организацией здравоохранения пандемией. Согласно последним данным, в мире заразились почти 522 тыс. человек, зафиксировано более 23,5 тыс. смертельных исходов. В России зарегистрировано 1036 случаев заражения, выздоровели 45 человек, четверо умерли. Правительство запустило ресурс стопкоронавирус.рф для информирования о ситуации в стране.
О «Спектре-РГ»
Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 года с космодрома Байконур, он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. На его борту размещено два рентгеновских телескопа: российский ART-XC и немецкий eROSITA. «Спектр-РГ», как ожидают ученые, позволит получить уникальные снимки неизвестных ранее космических объектов, которые помогут понять природу темной материи и Вселенной.
При этом в рамках комитета, в который входят ученые-руководители телескопов «Спектра-РГ», «по-прежнему идет активная переписка»
МОСКВА, 27 марта. /ТАСС/. Прямые встречи Объединенного комитета по немецкому телескопу eROSITA на обсерватории «Спектр-РГ» временно отменены на фоне пандемии коронавируса, но работы по проекту продолжаются. Об этом сообщил ТАСС научный руководитель проекта, академик РАН Рашид Сюняев.
«Прямые встречи комитета временно отменены в соответствии с карантином», — сказал он.
Однако, по словам академика, в рамках комитета, в который входят ученые-руководители телескопов «Спектра-РГ» из РФ и Германии, «по-прежнему идет активная переписка».
Также работа по обработке поступающих с телескопов данных учеными из России и Германии «не прекращается ни днем, ни ночью», отметил научный руководитель «Спектра-РГ».
Сюняев пояснил, что для обсуждений используется видеосвязь, в том числе с использованием Skype и ZOOM. Полученная после обработки информация, в том числе о проверке качества будет учтена «при следующей посылке команд на телескопы», добавил академик РАН.
Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 года с космодрома Байконур, он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. На его борту размещено два рентгеновских телескопа: российский ART-XC и немецкий eROSITA. «Спектр-РГ», как ожидают ученые, позволит получить уникальные снимки неизвестных ранее космических объектов, которые помогут понять природу темной материи и Вселенной.