ПРЕСС-КОНФЕРЕНЦИЯ О ПРОРЫВНЫХ РЕЗУЛЬТАТАХ РАБОТЫ КОСМИЧЕСКОЙ АСТРОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ «СПЕКТР-РГ»

РИА НОВОСТИ, : Пресс-конференция, в ходе которой были представлены прорывные результаты работы космической астрофизической обсерватории «Спектр-Рентген-Гамма».

http://pressmia.ru/pressclub/20191220/952604204.html

Участники:
— генеральный директор Государственной корпорации по космической деятельности «Роскосмос» Дмитрий РОГОЗИН;
— президент Российской академии наук Александр СЕРГЕЕВ.

Обсерватория была успешно выведена на орбиту ракетой-носителем «Протон-М» в июле 2019 года. В настоящее время «Спектр-РГ» находится в точке Лагранжа L2 на расстоянии 1,5 млн км от Земли и передает уникальные снимки неизвестных ранее космических объектов, которые позволят ученым понять природу темной материи, других космологических задач и нашей Вселенной.

Орбитальная рентгеновская обсерватория СРГ начинает сканирование неба

Орбитальная рентгеновская обсерватория Спектр-РГ, запущенная с космодрома Байконур 13 июля 2019 г., начинает обзор всего неба. 8-го декабря спутник, двигающийся по орбите вокруг вокруг точки либрации L2 на расстоянии полутора миллионов километров от Земли, совершил один оборот вокруг оси, направленной в сторону Земли. Таким образом был произведен пробный скан вдоль большого круга на небесной сфере, ознаменовавший начало перехода к обзору всего неба, который должен продлиться 4 года. Следуя за движением Земли вокруг Солнца, телескопы АРТ-ХС и еРОЗИТА каждые шесть месяцев будут  получать карту всего неба в несколько раз более чувствительную, чем все карты, полученные рентгеновскими астрономами до сих пор. Сумма восьми независимых карт, которые ожидается получить через 4  года работы,  позволит достигнуть рекордной чувствительности и обнаружить около трех миллионов активных ядер галактик и квазаров,  сто тысяч скоплений и групп галактик и около полумиллиона активных звезд, белых карликов, пульсаров и остатков вспышек сверхновых, нейтронных звезд и черных дыр в нашей Галактике. Сравнение же отдельных карт неба даст возможность астрофизикам следить за переменностью миллионов рентгеновских источников на небе.

Слева: Обсерватория «Спектр-РГ» во время наземных испытаний в НПО им. Лавочкина. Справа: Пуск ракеты «Протон» со спутником «Спектр-РГ» с космодрома Байконур.

Главной научной задачей обзора неба является исследование крупномасштабной структуры Вселенной и изучение природы темной материи и темной энергии. В тоже время, рекордная чувствительность обзора и обширная выборка рентгеновских источников разных типов, которые будут обнаружены в ходе обзора, имеют колоссальный потенциал для новых открытий и позволят вести исследования по всем направлениям современной астрофизики высоких энергий.

Началу обзора неба предшествовала кропотливая работа ученых и инженеров в Институте космических исследований РАН в Москве и в Институте внеземной физики  Общества им. Макса Планка в Германии по настройке и калибровке двух телескопов обсерватории. Эта работа завершились глубокими проверочными наблюдениями, в ходе которых телескопы обсерватории были испытаны в условиях реальных наблюдений астрофизических объектов. Приведенные ниже рисунки демонстрируют возможности телескопа СРГ/еРОЗИТА по проведению глубоких обзоров площадок в десятки квадратных градусов (см. также изображение мини-обзора eFEDS на сайте МПЕ).

На рис. 1 показана рентгеновская карта участка Галактического диска (т.н. «Хребет Галактики»), полученная телескопом еРОЗИТА в октябре 2019 г. На карте размером около 25 кв. градусов детектируются многочисленные рентгеновские источники, как расположенные в нашей Галактике, так и квазары, находящиеся на больших расстояниях от нас и наблюдаемые  «на просвет». Громадный интерес представляют галактические объекты: целые скопления молодых звезд, активно излучающих в рентгеновских лучах, звезды даже менее массивные чем наше Солнце, но имеющие короны, излучающие в рентгене в тысячи раз больше чем корона нашего Солнца. На карте помечены пульсары –  быстро вращающиеся замагниченные нейтронные звезды, остатки вспышек сверхновых, в которых светятся ударные волны из-за столкновений газа, сброшенного погибшей звездой, с окружающим межзвездным газом. Видны зоны диффузного излучения в рентгеновских лучах. Голубой и зеленый цвета соответствует высоким энергиям фотонов (то есть они излучаются газом с температурой в десятки миллионов градусов, а красный цвет соответствует излучению более холодного газа с температурой от сотен тысяч до миллиона градусов).

«Дыра Локмана» – уникальная область на небе, где поглощение рентгеновского излучения межзвездной средой нашей Галактики достигает минимального значения, что позволяет исследовать с рекордной чувствительностью далекие квазары и скопления галактик.  На площадке размером 20 кв. градусов телескоп еРОЗИТА задетектировал около 6000 рентгеновских источников (Рис.2). Подавляющее большинство этих источников – активныe ядра галактик и квазары, излучение которых связано с аккрецией вещества на сверхмассивную черную дыру. Согласно фотометрическим оценкам красных смещений, наиболее далекие из них находятся на красных смещениях вплоть до z~4-5. Также обнаружено более 100 скоплений галактик и несколько сотен активных звезд, расположенных в нашей Галактике.

Показанные изображения были получены в рамках российской квоты наблюдательного времени телескопа еРОЗИТА, и проанализированы сотрудниками отдела астрофизики высоких энергий ИКИ РАН.

Данный пресс-релиз на сайте пресс-службы ИКИ и РОСКОСМОСА.

Пресс-конференция о результатах 100-дневного космического полета «Спектр-РГ»

22 октября в 14:30 в Международном мультимедийном пресс-центре МИА «Россия сегодня» состоялась мультимедийная пресс-конференция на тему: «Космический аппарат «Спектр-РГ»: сто дней полета».
Участники:
— научный руководитель проекта «Спектр-РГ», академик РАН Рашид СЮНЯЕВ;
— заместитель начальника управления – начальник отдела Госкорпорации «Роскосмос» Виктор ВОРОН;
— заместитель начальника комплекса АО «НПО им. Лавочкина» Илья ЛОМАКИН;
— заместитель научного руководителя проекта «Спектр-РГ», член-корреспондент РАН Евгений ЧУРАЗОВ;
— ведущий научный сотрудник ИКИ РАН, член-корреспондент РАН Марат ГИЛЬФАНОВ;
— научный руководитель телескопа ART-XC, руководитель отдела астрофизики высоких энергий ИКИ РАН Михаил ПАВЛИНСКИЙ;
— руководитель отдела наземных научных комплексов ИКИ РАН Владимир НАЗАРОВ.
21 октября 2019 г. – сто дней полета космической астрофизической обсерватории «Спектр-РГ», предназначенной для самой масштабной «переписи» скоплений галактик во Вселенной. Обсерватория была выведена в космос 13 июля 2019 г. с космодрома Байконур.

Фото (с) В.Г. Колесниченко и Пресс-центр «Россия Сегодня», 2019

SRG/ART-XC: регулярные наблюдения области центра Галактики

Обсерватория СРГ, которая в данный момент находится на этапе перелета в окрестность точки Лагранжа L2 системы Солнце-Земля, проводит регулярные наблюдения области центра Галактики.

В галактическом центре наблюдается яркий источник, который является суперпозицией сверхмассивной черной дыры Стрелец А* и протяженного рентгеновского излучения окрестности черной дыры размером 4х8 парсек (Перез и др., 2015, Nature).

На изображении показана область центра Галактики, полученное 16 августа.

Изображение яркого рентгеновского источника 1E1743.1-2843 в центре Галактики (Лотти и др., 2016)

 

Спектр-РГ: Месяц в полете

Все системы аппарата функционируют штатно, в данный момент продолжаются работы по калибровке телескопа ARTXC и готовятся к включению детекторы телескопа eRosita. Расстояние от Земли на данный момент составляет около 1430 тыс. км.

Идет активная программа научных наблюдений, уже получены данные по ярким источникам рентгеновского излучения Cyg X-1, Cen X-3, Cen A, a также по центру Галактики Sagittarius A*.

На сайте NASA в разделе «астрофизическая картинка недели» размещено сообщение о первом свете обсерватории СРГ.

Seven First Lights of ART-XC

The Spektr-RG observatory (or SRG as it’s more commonly known) is a Russian-German X-ray observatory, launched on July 13, and currently on a journey to its final staging point, a region of precarious orbital stability in the earth-Sun system called «L2», about a million miles from earth along the earth-Sun line. Once it arrives at L2, SRG will survey the entire sky every six months over the next four years. SRG consists of two observing instruments. The Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument consists of 7 individual telescopes which will generate images of the X-ray sky in the energy band from 5 kilo-electronvolts up to 30 kilo-electronvolts, which is about 3 times higher in energy than most other imaging X-ray observatories, like ChandraXMM-Newton and Swift. ART-XC was developed by the Russian Academy of Sciences’ Space Research Institute, in cooperation with the Russian Federal Nuclear Centre; NASA’s Marshall Space Flight Center provided ART-XC’s X-Ray mirrors. Published: August 12, 2019

Полный текст можно посмотреть на сайте HEASARC.

Владимир Путин и глава «Роскосмоса» Дмитрий Рогозин

Как обстоят дела в ракетно-космической сфере, обсудили Владимир Путин и глава «Роскосмоса» Дмитрий Рогозин

Дмитрий Рогозин рассказал об итогах первого полугодия работы корпорации. И гордиться есть чем: ряд успешных запусков, в том числе с космодрома Восточный.

«Из важных пусков хотел бы отметить также запуск космической лаборатории «Спектр-РГ». Это важнейшая работа для Российской академии наук. Аппарат уходит сейчас в точку Лагранжа, и мы планируем получить очень серьезные данные для нашей фундаментальной науки», — рассказал глава «Роскосмоса».

Запуск с Байконура состоялся 13 июля. А после с околоземной орбиты началось стодневное путешествие обсерватории. Добравшись до наиболее выгодной точки для съемок, аппарат начнет присылать фотографии неизвестных ранее окраин Вселенной. Этот снимок сделан в пути — телескоп рассмотрел заметную лишь в рентгеновском диапазоне далекую звезду. Ее тусклый свет добирался до нас 18 с половиной тысяч лет.

«Это была нейтронная звезда, первый рентгеновский пульсар, открытый в нашей галактике. И для нас это является подтверждением, что все характеристики телескопа замечательно работают в космосе, на удалении более миллиона километра от Земли», — сказал заместитель директора Института космических исследований РАН Михаил Павлинский.

https://www.1tv.ru/n/369707

Первый свет обсерватории Спектр-РГ

30 июля 2019 были получены изображения рентгеновского пульсара Центавр X-3 (Cen X-3)

Получено первое рентгеновское изображение с телескопа ARTXC

Изображение рентгеновского источника Центавр X-3 получено со всех семи модулей телескопа ART-XC. В ближайшее время будет проводится юстировка семи модулей телескопа ART-XC.

Временной анализ данных также показал устойчивый периодический сигнал от источника с периодом 4.8 сек.

 

Расстояние от Земли до обсерватории «Спектр-РГ» на время получения первого света (30.07.2019) составляло 1 млн 143 тыс. км.

 

 

Изображения рентгеновского пульсара Центавр X-3, полученные семью модулями телескопа ART-XC. Расположение картинок соответствует расположению модулей телескопа. Внизу — профиль пульсирующего сигнала с периодом около 4,8 секунды, зарегистрированного телескопом ART-XC от этого источника.

Более подробная информация будет предоставлена в первом научном релизе проекта «Спектр-РГ».

И напоследок — небольшая анимация, показывающая как изменяется яркость пульсара в зависимости от фазы — глазами ART-XC.

Получены первые научные данные с телескопа ART-XC

24 июля в ходе сеанса связи с КА СРГ был включен детектор URD28 одной из зеркальных систем телескопа ART-XC. Была накоплена общая экспозиция 2882.5 секунд в направлении на поле Xbootes с координатами RA=218,0, Dec=34,1.

На рисунке зеленым цветом показан первый спектр детектора URD28, полученный с борта обсерватории Спектр-РГ, которая сейчас находится на этапе перелета в точку либрации L2.

Скорость счёта для одиночных и двойных событий в диапазоне 4 — 30 кэВ составила 6*10^(-3) отсч./с/см^2/кэВ. Для сравнения, при испытаниях на Земле фон составлял 4*10^(-4) отсч./с/см^2/кэВ, т.е. в 15 раз меньше (показано красным).

На данный момент, это первое измерение фона рентгеновским детектором на удалении около миллиона километров от Земли!

Также было получено первое рентгеновское изображение с борта СРГ с того же детектора в диапазоне 4 — 12 кэВ:

Настоящее и будущее космической астрономии

На международной конференции «Рубежи нелинейной физики-2019» ведущий научный сотрудник Института космических исследований РАН, член-корреспондент РАН Евгений Чуразов рассказал о развитии рентгеновской астрономии и отечественной обсерватории «Спектр-РГ», запуск которой состоялся 13 июля.

— Мы с вами сегодня участвуем в конференции, посвященной нелинейной физике. Астрофизические процессы тоже нелинейны?

— Физические законы везде одинаковы. Линейная теория очень важна и позволяет многое понять без сложных расчетов, но нелинейная физика гораздо богаче и разнообразнее. Астрофизика предоставляет широкий диапазон параметров для изучения самых больших плотностей, самых больших температур, самых больших гравитационных полей. Поэтому в этом смысле астрофизика – это настоящая лаборатория, существующая сама по себе. С ее помощью мы можем исследовать самые экстремальные физические состояния, а затем применять полученные данные для уточнения привычной физики, с которой мы встречаемся на Земле.

Главная трудность заключается в том, что нужны приборы, которые способны исследовать астрофизические объекты в различных диапазонах длин волн.

— Меня всегда удивляло то, что в астрофизике нельзя ни с чем повзаимодействовать и нужно полагаться только на приборы.

— Я ведь сейчас тоже вижу вас в оптическом диапазоне. Но при этом получаю массу информации. То же самое происходит в рамках астрофизики.

Раньше люди могли смотреть на звезды исключительно в оптическом диапазоне. Но сейчас у нас появилась возможность видеть Вселенную от радио до гамма-диапазона электромагнитного спектра. Недавно появилась нейтринная астрономия и даже гравитационно-волновая. Наши наблюдательные возможности принципиально расширились. Так что прогресс налицо.

— Один астроном мне сказал, что до появления инфракрасных телескопов мы о Вселенной почти ничего не знали. Именно с помощью этих приборов ученым удалось увидеть самые разные объекты.

— Это можно сказать и про любой другой диапазон энергий. Спектры источников разной природы радикально отличаются, и, выбирая разные диапазоны энергий, мы часто видим совершенно разные объекты. В инфракрасном излучении – это, в частности,  молекулярный газ и пыль. Переходя на инфракрасный диапазон, необходимо создавать специальные приемники излучения и охлаждать их до низкой температуры, поскольку тепловые шумы мешают наблюдениям.

Говоря о рентгеновском диапазоне, замечу, что, к счастью для нас, атмосфера Земли непрозрачна для рентгеновских лучей. Поэтому приходится запускать телескопы  за пределы земной атмосферы.

— Вы работали над несколькими проектами рентгеновских обсерваторий. Может быть, прослеживается какая-то эволюция  этих приборов?

— Конечно. Рентгеновская астрономия началась с  того момента, как стали возможны космические полеты. Первые ракеты поднимались на несколько минут на высоту более 80 километров, а потом падали. И в момент, когда они были на достаточной высоте, приборы собирали данные в рентгеновском диапазоне. Исходная идея состояла в детектировании рентгеновского излучения Солнца, отраженного поверхностью Луны. А вместо этого в 1962 году открыли ярчайший источник рентгеновского излучения в созвездии Скорпиона (аккрецирующую нейтронную звезду в двойной системе), получивший название Скорпион Х-1. Кстати, один из авторов этого открытия – Риккардо Джиаккони – получил в 2002 году Нобелевскую премию за вклад в развитие рентгеновской астрономии.

С этого всё и началось. Каждая новая обсерватория чем-то превосходила предыдущую. Сначала детекторы мерили направление и энергию рентгеновских фотонов очень приблизительно. Затем научились строить изображения и получать спектры излучения. С развитием технологий одновременно увеличивалось и качество, и чувствительность изображений. Например, сегодня космический телескоп «Чандра» (Chandra X-ray Observatory, NASA) имеет угловое разрешение лучше одной секунды дуги, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.

Следующий этап – на ближайшие несколько лет – это (1) запуск криогенных болометров для получения качественных рентгеновских спектров (обсерватория XRISM [JAXA/NASA]), (2) измерение поляризации рентгеновского излучения (спутник IXPE [NASA]) и (3) проведение самого чувствительного обзора всего неба в рентгеновских лучах (наша обсерватория Спектр-Рентген-Гамма [Роскосмос], которая будет запущена через неделю).

— Чем отличаются задачи этих обсерваторий?

— Приведу лишь несколько примеров.

Что касается криогенных болометров, то они улучшают точность измерения энергии фотонов по меньшей мере в 30 раз. Это, в частности, позволяет измерять скорости движения горячего газа в скоплениях галактик, когда энергии рентгеновских эмиссионных линий сдвигаются за счет эффекта Доплера. Мы много знаем о свойствах газа в скоплениях – его плотность, температуру и обилие тяжелых элементов, но скорости газа до сих пор остаются важнейшим неизвестным ингредиентом.

По части поляриметров — единственный источник, для которого измерена почти 50 лет назад (!) поляризация рентгеновского излучения – это Крабовидная туманность, где релятивистские электроны в магнитном поле порождают синхротронное излучение. А ведь есть еще много других интересных задач, где знание поляризации было бы очень важно, например, для нейтронных звезд с очень сильным магнитным полем или для рассеяния рентгеновских фотонов в неоднородной среде, окружающей рентгеновский источник. В частности, измерение направления и степени поляризации рассеянного излучения в центральной зоне Млечного пути позволило бы подтвердить, что около 100 лет назад сверхмассивная черная дыра в нашей Галактике (источник Стрелец-А*) была в миллионы раз ярче, чем сегодня.

Наконец обсерватория Спектр-Рентген-Гамма должна за 4 года провести обзор всего неба в рентгеновских лучах, который будет в 20 раз чувствительнее предыдущего обзора тридцатилетней давности, выполненного спутником ROSAT. Это позволит исследовать рекордно большой объем Вселенной и зарегистрировать около ста тысяч скоплений галактик (в том числе, абсолютно все массивные скопления, которые существуют в наблюдаемой Вселенной), более трех миллионов аккрецирующих сверхмассивных черных дыр и многое другое. Все это позволит решать самые амбициозные задачи космологии, такие как, например, определение свойств темной энергии, а также вести поиск самых редких объектов во Вселенной.

— Как вы считаете, какое будущее ждет рентгеновскую астрономию  и астрофизику в целом?

— Надеюсь, хорошее. Как мы обсуждали выше, следующие несколько лет будут очень насыщенными и интересными. А планы на следующие 10-20 лет еще более амбициозны – сразу несколько групп предлагают соединить высокое спектральное разрешение, громадную эффективную площадь и отличное угловое разрешение в одном телескопе. Жаль только, что на создание подобных обсерваторий уходят десятилетия сложной, дорогостоящей работы. Поэтому необходимо строить планы на много лет вперед.

— Как вы считаете, удастся ли человечеству заглянуть в самое начало зарождения Вселенной?

— Существует такое понятие – «поверхность последнего рассеяния», которая примерно соответствует возрасту Вселенной в 400 тыс. лет. В этот момент электроны и протоны объединились в атомы водорода, свободные электроны почти исчезли, и Вселенная стала прозрачной для фотонов реликтового излучения. В более ранней Вселенной свободные электроны быстро рассеивают и «запутывают» фотоны. Поэтому с Земли в виде электромагнитного излучения мы получаем информацию непосредственно с этой поверхности. Именно ее наблюдали спутники, работающие в микроволновом диапазоне – Планк (ЕКА) и WMAP (НАСА), измеряя флуктуации температуры реликтового излучения. Напрямую «заглянуть» за поверхность последнего рассеяния нельзя, но, изучая свойства наблюдаемой Вселенной, например, те же флуктуации температуры, распределение галактик вокруг нас или измеряя обилие дейтерия и гелия в газе, мы можем сделать вывод о том, что происходило на очень ранних этапах возникновения Вселенной, гораздо раньше, чем Вселенная стала прозрачной.

Оригинал публикации: https://scientificrussia.ru/articles/evgenij-mihajlovich-churazov