Карта всего неба СРГ/еРОЗИТА. Кликните на изображение, чтобы увидеть описание объектов (c) М.Гильфанов, Р.Сюняев, Е.Чуразов (ИКИ), H.Brunner, A.Merloni, J.Sanders (МПЕ)
Наряду с миллионом далеких и достаточно слабых рентгеновских источников на карте, полученной по данным телескопа СРГ/еРОЗИТА, хорошо видны ярчайшие объекты.
Карта всего неба СРГ/еРОЗИТА с указанием наиболее ярких и примечательных объектов и протяженных структур (c) М.Гильфанов, Р.Сюняев, Е.Чуразов (ИКИ), H.Brunner, A.Merloni, J.Sanders (МПЕ)
Заметная часть этих источников привлекла к себе внимание лишь после зарождения радиоастрономии в 1950-е годы и рентгеновской астрономии в 1960-е. Сегодня о многих из них есть подробные статьи в Википедии.
Скопления галактик стали интересовать астрономов в ходе становления внегалактической астрономии в первой трети прошлого века. В 1933 году Фритц Цвикки впервые заявил о существовании в скоплении галактик в созвездии Волосы Вероники загадочной «темной материи». Ее физическая природа не разгадана по сегодняшний день.
Для сравнения ниже приведено замечательное изображение Млечного Пути в видимом диапазоне, сделанное астрономами Европейской Южной Обсерватории (ESO) в Чили.
Панорама Млечного Пути над ESO (c) G. Hüdepohl (atacamaphoto.com)/ESO https://www.eso.org/public/images/D5C1048-Pano-CC/
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Рентгеновский телескоп ART-XC обсерватории «Спектр-РГ» 10 июня 2020 г. завершил свой первый обзор всего неба. Сейчас обсерватория продолжает обзор, накапливая экспозицию и улучшая чувствительность полученной рентгеновской карты неба. Перед уходом во второй обзор, для проверки и демонстрации возможностей телескопа ART-XC по исследованию протяженных источников были проведены наблюдения известнейшего скопления галактик в созвездии Волосы Вероники (Coma Cluster), занимающего несколько градусов дуги на небе.
На протяжении двух суток 16–17 июня 2020 г. телескоп ART-XC наблюдал скопление в режиме сканирования (это один из трех режимов наблюдений обсерватории). Вместе с данными, полученными в декабре 2019 г., это позволило построить подробную карту распределения горячего газа в этом скоплении в жестких рентгеновских лучах вплоть до радиуса R500. Это расстояние, на котором плотность материи в скоплении в 500 раз превышает среднюю плотность во Вселенной, то есть почти до теоретической границы скопления (так называемого «вириального радиуса»).
Изображение скопления галактик в созвездии Волосы Вероники, размером 3 на 3 градуса, полученное телескопом ART-XC в диапазоне энергий 4–12 кэВ. Цветом показана интенсивность излучения. Общая экспозиция более чем на два порядка превышает экспозицию, достигнутую во время обзора. Изображение сглажено с характерным размером 1 угловая минута. Изображение: ИКИ РАН
Результаты этой работы продемонстрировали прекрасные возможности телескопа регистрировать и исследовать протяженные объекты с низкой поверхностной яркостью.
После окончания обзора всего неба в 2023 г. обсерватория «Спектр-РГ» на протяжении 2,5 лет будет проводить наблюдения наиболее интересных объектов на небе. Протяженные источники, такие как скопления галактик и остатки вспышек сверхновых, будут среди приоритетных мишеней.
«Нам удалось получить одну из лучших карт скопления галактик в диапазоне энергий 4–12 кэВ, — поясняет Михаил Павлинский, заместитель директора ИКИ РАН по проекту «Спектр-РГ», заместитель научного руководителя проекта «Спектр-РГ». — Вообще мы его регистрируем по крайней мере до 16 кэВ. Это открывает очень серьезные перспективы с научной точки зрения, в первую очередь, для точного определения температуры межгалактического горячего газа. Мы убедились, что можем строить карты, которых ни у кого нет».
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
На сайте космической обсерватории «Спектр-РГ» доступна интерактивная карта всего неба, построенная по данным российского телескопа ART-XC.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Неделю назад телескопы ART-XC и eROSITA (еРОЗИТА) на борту орбитальной обсерватории «Спектр-РГ» завершили сканирование всего неба в рентгеновских лучах. Об этом уже сообщалось, но работа по построению карты и определению числа источников, обнаруженных в ходе сканирования, продолжается. Как было договорено за годы до запуска, российские ученые обрабатывают данные с одной стороны неба, а немецкие ученые (телескоп еРОЗИТА создан в Германии) работают с рентгеновскими фотонами, пришедшими с другой половины неба. Карта всего неба, построенная учеными двух научных консорциумов и показанная на иллюстрации, оказалась удивительно информативной.
В самом центре карты находится сверхмассивная черная дыра с массой 4 миллиона солнечных масс (это достаточно слабый рентгеновский источник). По экватору картинки проходит плоскость нашей Галактики Млечный Путь, который мы можем наблюдать в полной красе на юге нашей страны в безлунную летнюю ночь. Но на рентгеновской карте Млечный Путь выглядит как темная полоса из-за того, что молекулярный газ и пыль в плоскости Галактики поглощают рентгеновские лучи. Синие точки, расположенные в этой области, демонстрируют наличие в Млечном Пути большого числа ярких и мощных источников рентгеновского излучения: это рентгеновские пульсары, аккрецирующие черные дыры в двойных звездных системах, остатки вспышек сверхновых (результат недавней гибели звезд).
Эта карта многоцветная, и различные цвета сразу позволяют судить о характерной энергии приходящих фотонов. На ней представлены все рентгеновские фотоны (а их 400 миллионов), зарегистрированные детекторами еРОЗИТЫ в диапазоне энергий от 300 электрон-вольт (эВ) до 2.3 килоэлектрон-вольт (кэВ) за полгода непрерывного сканирования неба. Красный цвет соответствует фотонам с энергией 0.3–0.6 КэВ, зеленый — 0.6–1 кэВ, синий — 1–2.3 кэВ.
Для простоты понимания можно сказать, что эти три диапазона энергий соответствуют, например, температуре излучающего горячего вещества от 3 миллионов до 6 миллионов градусов (красный цвет); от 6 до 10 миллионов градусов (зеленый) и от 10 до 25 миллионов градусов (синий цвет).
Хорошее угловое разрешение ( ~ 20 угловых секунд) и высочайшая чувствительность телескопа еРОЗИТА позволили ей нанести на карту более миллиона компактных источников и десятки тысяч протяженных. Такое количество невозможно продемонстрировать на одном изображении. Лишь самые яркие из источников видны на карте как точки. Но и их немало: многие тысячи.
Уже первый обзор неба спутником «Спектр-РГ» позволил телескопу еРОЗИТА построить карту, содержащую почти в 10 раз больше источников и в четыре раза более чувствительную, чем бывшая лучшей в мире карта немецкого спутника РОСАТ, полученная в 1990 году. Всего за полгода сканирования неба еРОЗИТА смогла удвоить полное число источников, зарегистрированных всеми спутниками в мире за 60 лет рентгеновской астрономии. «Эта карта всего неба полностью меняет наш взгляд на высокоэнергичные процессы во Вселенной», — говорит Петер Предель (Peter Predehl), научный руководитель телескопа еРОЗИТА в Институте внеземной физики Общества имени Макса Планка (МПЕ, Германия). — «Мы видим такое богатство деталей — красота этого изображения просто поражает».
Эта карта позволяет видеть, как сотни вспышек сверхновых, а возможно, и активность, время от времени, сверхмассивной черной дыры в центре Галактики, приводят к фонтанирующим выбросам горячего газа с температурами до 10 миллионов градусов из плоскости нашей Галактики (яркие зоны выше и ниже плоскости Галактики). В излучение зон с более низкой температурой вносят вклад и около двухсот тысяч достаточно близких от нас звезд с коронами гораздо более мощными, чем у нашего Солнца.
Но три четверти (!) всех объектов на этой карте — это далекие квазары и ядра активных галактик, т.е. сверхмассивные черные дыры, излучающие за счет падения на них вещества. Они находятся далеко за пределами Млечного Пути на расстояниях в сотни миллионов и миллиарды световых лет от нас.
Среди вновь открытых объектов на этой карте уже найдены квазары с красными смещениями более чем 6 (все линии в их спектрах смещены в красную сторону более 7 раз из-за расширения Вселенной). Мы видим на карте около 20 тысяч скоплений галактик, заполненных загадочным «темным веществом».
На то, чтобы с помощью оптических телескопов получить полную информацию о красных смещениях большинства квазаров и скоплений галактик, открытых телескопом еРОЗИТА, потребуются годы. «Но уже сейчас мы сможем начать использовать этот набор объектов, находящихся на гигантских расстояниях, для определения времени их появления этих во Вселенной и уточнения ее свойств и параметров, т.е. в целях космологии», — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев.
Телескопы обсерватории «Спектр-РГ» продолжают работу. Планируется, что через несколько дней она начнет второй обзор неба. Ожидается, что он продлится до конца года. Всего планируется получить еще семь таких карт еРОЗИТЫ. На это уйдет еще три с половиной года. Суммарная карта будет примерно в 5 раз (!) чувствительнее первой, а число источников на ней должно возрасти более чем в 10 раз. «Тогда появится уверенность, что наши карты и каталоги источников будут использоваться астрофизиками и космологами всех стран мира как минимум следующие двадцать лет, пока не появятся более совершенные рентгеновские телескопы, и ученые не решат, что пора делать новую, еще более чувствительную карту рентгеновского неба», — отмечает Рашид Сюняев.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
В работе астрофизиков России и Германии, работающих сейчас на удалении от своих рабочих мест, выдающееся событие: телескопы ART-XC и eROSITA на борту орбитальной обсерватории «Спектр-РГ» завершили свой первый обзор всего неба в рентгеновских лучах.
К вечеру 11 июня телескоп СРГ/еРозита завершил построение карты, охватывающей всю небесную сферу, площадь которой составляет 41 тысячу 253 квадратных градуса. На это ушло полгода. Изображения половины неба, за обработку и анализ которой отвечают российские астрофизики, приведены на рисунках, на которых показаны карты в двух энергетических диапазонах: 0.3-0.7 кэВ и 0.7-2.3 кэВ. В них чувствительность телескопа СРГ/еРозита максимальна. На этих картах зарегистрировано около полумиллиона рентгеновских источников.
Карта половины всего неба в диапазоне 0.3–0.7 килоэлектрон-вольта, полученная телескопом СРГ/еРозита в ходе первого обзора неба. Изображение: ИКИ РАН
На карте в более мягком диапазоне энергий 0.3–0.7 кэВ хорошо видны остатки вспышек сверхновых (следы гибели звезд) и излучение «теплого» межзвездного газа с температурой в сотни тысяч градусов Кельвина, а также относительно близкие звезды с коронами, намного более мощными чем у Солнца. Их более ста тысяч.
Обращает на себя внимание Северный Полярный Шпур — ярчайшая и самая протяженная в мягких рентгеновских лучах область нашей Галактики. Хорошо видна темная полоса, протянувшаяся вдоль плоскости нашей Галактики, где поверхностная яркость рентгеновского излучения меньше, чем в других частях карты. Это связано с поглощением мягких рентгеновских лучей газом и пылью в диске нашей Галактики.
«Уже сейчас понятно, что данные телескопа СРГ/еРозита на борту «Спектра-РГ» позволят нам уточнить количество атомарного и молекулярного газа и пыли в различных направлениях на небе», — говорит академик Рашид Сюняев, научный руководитель проекта «Спектр-РГ», научный руководитель отдела астрофизики высоких энергий ИКИ РАН.
Карта половины всего неба в диапазоне 0.7–2.3 килоэлектрон-вольта, полученная телескопом СРГ/еРозита в ходе первого обзора неба. Изображение: ИКИ РАН
На карте в диапазоне 0.7–2.3 кэВ в основном проявляют себя внегалактические объекты. Мы видим сотни тысяч ядер активных галактик и квазаров, излучение которых связано с аккрецией (падением) вещества на сверхмассивные черные дыры, и тысячи массивных скоплений галактик, заполненных в основном загадочным «темным веществом» и горячим межгалактическим газом. Абсолютное большинство этих объектов находятся на космологических расстояниях от нас, превышающих миллиарды световых лет.
В этом диапазоне мы также видим рентгеновские пульсары, аккрецирующие белые карлики и многие другие типы галактических источников рентгеновского излучения.
Большинство из детектируемых объектов наблюдаются впервые. Точные измерения их положений, с точностью порядка нескольких угловых секунд, позволяют отождествить заметную часть открываемых объектов с источниками, известными в оптическом или инфракрасном диапазонах спектра. На большинство рентгеновских источников телескоп СРГ/еРозита «смотрел» лишь по 150–300 секунд.
Яркое излучение в центральной части карты связано с излучением горячего газа и молодых объектов различной природы в областях звездообразования в созвездии Лебедя, включая известнейший остаток вспышки сверхновой Петля в Лебеде, ряда планетарных туманностей и скоплений молодых звезд, а также известнейших рентгеновских источников, таких как черная дыра Лебедь X-1 и нейтронные звезды Лебедь X-2 и X-3, а также знаменитая далекая радиогалактика Лебедь А.
Из-за эффектов проекции на приведенных выше картах почти не видна зона центра Галактики, представляющая огромный интерес для астрономов. Она показана ниже, размер изображения 40х20 градусов.
Карта области Центра Галактики и Галактической плоскости размером 40х20 градусов в диапазоне 0.3–2.0 кэВ. Изображение: ИКИ РАН
Сверхмассивная черная дыра Sgr A* находится на правой границе этой карты в плоскости Галактического экватора. Эта область богата рентгеновскими источниками разной природы, но сильно поглощена в мягких рентгеновских лучах из-за высокой концентрации молекулярного газа. Ярчайшие источники в этой области выглядят сильно размытыми из-за их высокой яркости.
Первая же карта неба в рентгеновских лучах телескопа СРГ/еРозита превысила по чувствительности, угловому разрешения и числу наблюдаемых источников карту знаменитого германского спутника ROSAT, которая в течение 30 лет была лучшей в мире.
Телескопы обсерватории СРГ сканируют небо вдоль большого круга на небесной сфере, плоскость которого поворачивается примерно в соответствии с движением Земли вокруг Солнца. Все сканы пересекаются в полюсах эклиптики, где рентгеновская карта неба имеет наибольшую чувствительность. Плотность объектов, детектируемых телескопом СРГ/еРозита в этих зонах, достигает порядка 700 источников на квадратный градус.
Телескопы обсерватории «Спектр-РГ» продолжают работу. Планируется, что после маневра коррекции орбиты, намеченного на середину июня, и коротких калибровочных наблюдений, необходимых для подтверждения параметров спектрального отклика телескопов, обсерватория начнет второй обзор неба.
Планируется получить еще 7 таких карт в течение следующих трех с половиной лет. Суммарная карта будет намного более подробной, чем первая, за счёт постоянного увеличения экспозиции и чувствительности, конечно при условии непрерывной и качественной работы спутника и его телескопов.
«Тогда появится уверенность, что наши карты и каталоги источников будут использоваться астрофизиками и космологами всех стран мира, как минимум, следующие двадцать лет, — пока одно из космических агентств не решит, что пора делать новую, еще более подробную карту рентгеновского неба», — говорит Рашид Алиевич.
Ожидается, что второй обзор неба продлится до конца года. Сумма данных двух обзоров позволит более чем вдвое увеличить число детектируемых рентгеновских источников, а сравнение карт позволит исследовать переменность источников и открывать новые уникальные объекты на небе.
Предприятия ГК «Роскосмос» ведут управление спутником, антенны дальней космической связи ежедневно осуществляют прием научных данных и посылают команды на спутник и научные приборы, находящиеся на расстоянии в полтора миллиона километров от Земли (в четыре раза дальше Луны). Ученые ИКИ РАН в удаленном режиме ведут обработку научных данных на мощных компьютерах в центре данных проекта. Карту на противоположной половине неба строят ученые германского Института внеземной физики Общества имени Макса Планка. Вместе две эти «половинки» покрывают всю небесную сферу.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
После получения телеметрических данных с борта обсерватории «Спектр-РГ», в ИКИ РАН в течение нескольких часов в автоматическом режиме была проведена их обработка, по результатам которой была построена карта всего неба по фотонам телескопа ART-XC.
Были получены изображения неба, проведен поиск источников и обновлены базы данных. Карта обзора всего неба телескопа АРТ-XC с вычтенным фоном заряженных частиц представлена на рисунке.
Обзор всего неба телескопом ART-XC в рамках первого этапа научной программы обсерватории «Спектр-РГ» был проведен с 8 декабря 2019 по 10 июня 2020 г.
Первое изображение, опубликованное 10 июня, содержало все зарегистрированные события, включая рентгеновские фотоны, а также заряженные частицы — космические лучи. Оно было получено с помощью программ оперативной обработки, которые позволяют регистрировать яркие и новые источники практически сразу после получения данных.
Чтобы выделить из этих данных именно рентгеновские фотоны и учесть экспозицию (говоря грубо, некоторые источники могут выглядеть более яркими, поскольку в ходе обзора они попали в большее число сканов), требуется более длительная обработка, результаты которой появились через несколько часов.
Карта, полученная по обзору всего неба телескопом ART-XC в рамках первого этапа научной программы обсерватории «Спектр-РГ» 8 декабря 2019 по 10 июня 2020 г., с вычтенным фоном заряженных частиц. Изображение: ИКИ РАН
В галактических координатах представлены источники рентгеновских фотонов. Наиболее яркие источники находятся в плоскости Галактики, а также в полюсах эклиптики (слева и справа от центра изображения) — в этих точках экспозиция выше, и, соответственно, больше количество зарегистрированных фотонов.
Число источников на этом изображении не кажется большим, но это связано с необходимостью загрубить карту для визуализации. Для этого изображения, как и для предыдущего, размер исходного пикселя был увеличен на два порядка — иначе его нельзя было бы показать.
Обработка данных проводилась на вычислительных мощностях Центра научных данных Наземного научного комплекса проекта «Спектр-РГ» в ИКИ РАН.
Число зарегистрированных ART-XC источников после первого обзора составило около 600: 2/3 галактических (компактные объекты с черными дырами, нейтронными звездами, белыми карликами, остатки вспышек сверхновых) и около 1/3 внегалактических (в основном, активные ядра галактик, а также несколько массивных скоплений галактик). Чувствительность обзора будет расти пропорционально времени экспозиции. Обсерватория будет продолжать обзор в течение следующих нескольких лет.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Свершилось — телескоп ART-XC обсерватории «Спектр-РГ» завершил свой первый обзор всего неба! Как и предполагалось, это заняло почти ровно полгода (с 8 декабря 2019 г. по 10 июня 2020 г.), в течение которых телескоп непрерывно сканировал небесную сферу в жестких рентгеновских лучах.
Карта всего неба в галактических координатах, полученная с помощью телескопа ART-XC в диапазоне энергий 4–12 кэВ 8.12.2019–10.06.2020. Отмечены все зарегистрированные события. Для данного изображения размер исходного пикселя был увеличен в сто раз, поэтому слабые источники оказались скрыты фоном. Изображение: ИКИ РАН
На рисунке показаны все события в диапазоне энергий 4–12 кэВ, зарегистрированные телескопом ART-XC и перенесенные на небесную сферу.
Угловое разрешение полученной карты обзора — менее одной угловой минуты, и в этом состоит ее уникальность. Ранее карта всего неба сравнимой четкости имелась лишь в мягком рентгеновском диапазоне (на энергиях ниже 2 кэВ) — ее 30 лет назад получила германская обсерватория ROSAT. В жестком рентгене существовали лишь карты с гораздо худшим угловым разрешением — порядка градуса дуги. Можно сказать, что на смену крупномасштабной карте, на которой отмечены только главные особенности рельефа, к нам пришла мелкомасштабная топографическая карта Вселенной в жестких рентгеновских лучах.
«Это стало возможным не только благодаря стратегии сканирующих наблюдений, реализованной на обсерватории СРГ, но и тому, что прибор ART-XC — первый широкоугольный (поле его зрения составляет 36 угловых минут) зеркальный телескоп, работающий в жестком рентгеновском диапазоне, — говорит Михаил Павлинский, заместитель директора ИКИ РАН по проекту «Спектр-РГ», заместитель научного руководителя проекта «Спектр-РГ». Напомним, что этот уникальный телескоп создан в России, а «Спектр-РГ» — первая отечественная обсерватория, работающая в окрестности точки Лагранжа L2, на расстоянии около полутора миллионов километров от Земли».
Ученым еще предстоит исследовать полученную карту неба, выделить на ней отдельные источники рентгеновского излучения и изучить их природу. Главное же состоит в том, что наблюдения телескопа ART-XC продолжаются, и в следующие 3,5 года обзор всего неба будет повторен еще 7 раз. Это позволит добавить «глубины» к уже достигнутой четкости рентгеновской карты.
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
9 июня в обращение вышел почтовый блок с 3 марками «Россия — космическая держава»
Россия имеет богатые традиции и колоссальный опыт в области исследования космоса и, бесспорно, является мировым лидером в освоении космического пространства. Наша страна осуществила первый запуск космического корабля с человеком на борту в космическое пространство, первый выход человека в космос, первое посещение окололунного пространства.
Полвека назад советский «Луноход» стал первым в мире планетоходом, который успешно работал на поверхности Луны. Автоматическая межпланетная станция «Луна-17» с «Луноходом-1» стартовала 10 ноября 1970 года. Луноход проработал на спутнике Земли в 3 раза дольше первоначально рассчитанного ресурса — 3 месяца. Он проехал 10 540 м, передал на Землю 211 лунных панорам и 25 тысяч фотографий.
13 июля 2019 года состоялся успешный пуск ракеты-носителя «Протон-М» с космической астрофизической обсерваторией «Спектр-РГ». 21 октября 2019 года аппарат завершил перелёт в окрестность точки либрации L2 системы Солнце — Земля. Проведение астрофизических исследований запланировано в течение 6,5 лет, из которых 4 года — в режиме сканирования звёздного неба, а 2,5 года — в режиме точечного наблюдения объектов во Вселенной по заявкам мирового научного сообщества.
В настоящее время ведутся разработки нового перспективного пилотируемого корабля «Орёл». Первый пуск запланирован на 2023 год, в 2024 году — со стыковкой с МКС, а в 2025 году начнутся пилотируемые полёты.
На почтовом блоке из трёх марок изображены достижения российской космонавтики: первый самоходный аппарат «Луноход-1» (1970), астрофизическая обсерватория «Спектр-РГ» (2019), перспективный пилотируемый корабль «Орёл» (2025).
Дополнительно к выпуску почтового блока АО «Марка» изданы конверты первого дня и изготовлены штемпеля специального гашения для Москвы, Санкт-Петербурга, Красноярска, Астрахани, Архангельска, Калуги, Самары, Кемерова, Омска, Евпатории Республики Крым, Байконура, Мирного Архангельской области, Звёздного Городка, Королёва Московской области и Циолковского Амурской области, а также выпущена художественная обложка, внутри — почтовый блок, виньетка и конверт с гашением для Байконура. Кроме того, выпущена художественная обложка с сувенирным блоком, изготовленным с использованием технологии стерео-варио.
Художник-дизайнер: А. Московец.
Номинал: по 30 р.
Размер блока: 72×130 мм; размер марок в блоке: 50×37 мм.
Тираж: 45 тыс.
Ученые Института космических исследований Российской академии наук, специалисты АО «НПО им. Лавочкина» и Баллистического центра Института прикладной математики им. М. В. Келдыша РАН с помощью телескопа ART-XC на борту орбитальной обсерватории «Спектр-РГ» провели серию наблюдений нескольких быстровращающихся рентгеновских пульсаров (периоды вращения 16–150 миллисекунд) и смогли определить время приходящих из космоса сигналов с высочайшей точностью. Эти наблюдения, наряду со штатными измерениями параметров траектории космического аппарата (КА), позволили провести юстировку бортовых часов относительно мирового времени с миллисекундной точностью. Это критически важно не только для астрофизических исследований, но и для решения прикладных задач космической навигации. Более того, было показано, что приемлемые навигационные параметры спутника можно получать, используя только данные измерений пульсаров. Это открывает возможности для создания системы автономной навигации КА по сигналам рентгеновских пульсаров.
«Современное состояние дел с навигацией космических аппаратов, говоря образно, похоже на ситуацию с навигацией морских кораблей эпохи Великих географических открытий, — объясняет профессор РАН Александр Лутовинов, заместитель директора ИКИ РАН. — Пока корабль находится близко от берега (или, в случае космического аппарата, от Земли), то определить его точное положение совсем не трудно. Когда же Земля далеко и привычные ориентиры теряются, то задача становится значительно сложнее. Полеты к Марсу, Венере, сложные маневры около далеких планет требуют проведения длительных и регулярных измерений положения КА, которые проводятся с Земли специальными радио- и оптическими телескопами».
В ИКИ РАН совместно с НПОЛ и Баллистическим центром ИПМ РАН началась разработка системы рентгеновской навигации — автономной системы навигации космических аппаратов по сигналам рентгеновских пульсаров. Это быстровращающиеся нейтронные звезды, которые посылают в космос короткие (длительностью миллисекунды или десятки миллисекунд) периодические импульсы рентгеновского излучения.
Формы таких импульсов уникальны для разных пульсаров, и, более того, они оказываются стабильными на длительных временных масштабах, сравниваясь со стабильностью атомных часов. Это свойство можно использовать для определения текущих координат КА и проверки точности хода его бортовых часов — это ключевое обстоятельство для решаемых КА задач. Фактически, пульсары являются природными «маяками» Вселенной, которые позволяют создать абсолютную систему навигации космических аппаратов.
«Технические характеристики российского рентгеновского телескопа ART-XC позволили впервые в России провести эксперименты по автономной навигации КА, — продолжает Александр Лутовинов. — В первую очередь, независимым образом по данным измерений сигналов рентгеновских пульсаров была определена точность хода бортовых часов КА, что необходимо в том числе для точной привязки положения КА относительно Земли. Здесь снова возникает аналогия с морскими судами. Если штурманы прошлых столетий довольно легко определяли широту корабля по положению Полярной звезды, то точно определить долготу стало возможным только в середине XVIII века, после создания высокоточных хронометров.
Успешное проведение эксперимента по рентгеновской навигации с помощью телескопа ART-XC открывает дальнейшие перспективы создания такой системы».
Проведенная серия наблюдений позволила не только уточнить законы хода бортовых часов обсерватории, но и начать детальные исследования целого ряда быстропеременных объектов Вселенной. Один из них — источник PSR B1509-58. Это быстровращающаяся нейтронная звезда (период ~150 мсек), находящаяся в пульсарной туманности «Рука Бога» (Hand of God).
Изображение пульсара PSR B1509-58, полученное в ходе специализированных экспериментов, проведенных с борта космической обсерватории «Спектр-РГ» с помощью телескопа ART-XC (показано зеленым) и пульсарной туманности «Рука Бога» по данным обсерватории Chandra NASA (представлено красным и синим цветами). На вставке показана форма сигнала, регистрируемого телескопом ART-XC, в соответствие с которым меняется наблюдаемая интенсивность излучения пульсара. Кликните по изображению, чтобы увидеть анимацию. Автор: С. В. Мольков, ИКИ РАН
На представленной картинке видна не только нейтронная звезда, которую телескоп ART-XC регистрирует в рентгеновском диапазоне 4-12 кэВ, но и излучение самой туманности, возникающее при взаимодействии частиц, испускаемых пульсаром, с окружающим веществом, оставшимся от взрыва сверхновой. Туманность излучает в мягком рентгеновском диапазоне и показана на рисунке синим и красным цветами (данные американской космической обсерватории Chandra). Хорошо видны очертания руки, отсюда и поэтическое название объекта.
Скоро исполнится год успешной работе обсерватории «Спектр-РГ», которая завершает свой первый обзор всего неба. Если искать параллели результатам телескопа ART-XC в древнегреческой мифологии, то можно сказать, что «Рука Бога» времени Хроноса озаряет путь «Спектр-РГ».
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.
Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Изображение пульсара PSR B1509-58, полученное в ходе специализированных экспериментов, проведенных с борта космической обсерватории Спектр-РГ с помощью телескопа ART-XC (показано зеленым) и пульсарной туманности «Рука Бога» по данным обсерватории CHANDRA (представлено красным и синим цветами). На вставке показана форма сигнала, регистрируемого телескопом ART-XC, в соответствие с которым меняется наблюдаемая интенсивность излучения пульсара. Автор: С. В. Мольков, ИКИ РАН