Букет красивых рентгеновских объектов на небе для всех женщин нашей страны и мира от орбитальной обсерватории «Спектр-РГ» ко дню 8 марта

(с) СРГ/еРОЗИТА/ИКИ

Ученые-астрофизики Института космических исследований РАН поздравляют мам, бабушек, дочек, внучек, жен, прекрасных коллег и всех дам букетом рентгеновских изображений небесных объектов, полученных в ходе сканирования неба в рентгеновских лучах телескопом еРОЗИТА (eROSITA) обсерватории «Спектр-РГ». Среди них — остатки вспышек сверхновых звезд, радиопульсар, скопление молодых звезд (в тысячи раз моложе нашего Солнца) в области звездообразования в нашей Галактике, а также сверхмассивные черные дыры, галактики и скопления галактик за пределами Млечного Пути.

Большинство из этих изображений получено в ходе 5-минутных экспозиций, но на получение некоторых из них потребовались десятки часов наблюдений. Эти данные были получены в рамках российской квоты наблюдательного времени телескопа еРОЗИТА на российском спутнике «Спектр-РГ».(с) СРГ/еРОЗИТА/ИКИ

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

СРГ/еРОЗИТА: Есть рентгеновская карта трети всего неба!

Орбитальная обсерватория «Спектр-РГ» отмечает важный этап — построена одна треть рентгеновской карты всего неба. Количество зарегистрированных рентгеновских источников на российской половине этой карты (16,7% всего неба) превышает 95 000. Лишь одна шестая их часть была задетектирована немецким спутником ROSAT на единственной в мире полной рентгеновской карте неба, полученной в далеком 1990 году.

Зарегистрированное количество источников соответствует предсказаниям ученых.

Карта трети всего неба, полученная в ходе первого сканирования небесной сферы в обзоре СРГ/еРОЗИТА (с) СРГ/еРОЗИТА/ИКИ

На рисунке видно, что самая длительная экспозиция и плотность источников (на квадратный градус) набираются в районе полюсов эклиптики (на рисунке показан северный полюс), где пересекаются все сканы неба.

Появление темной полосы на изображении рентгеновского неба связано с поглощением мягких рентгеновских лучей газом и пылью в плоскости нашей Галактики.

На врезке слева показано «богатое» скопление галактик А 426, справа — ярчайший остаток вспышки сверхновой звезды (Cas А) в созвездии Кассиопеи. Напомним: каждое из этих изображения получено за 5-минутную экспозицию.

Сканирование неба телескопами орбитальной обсерватории «Спектр-РГ» продолжается. Предприятия Роскосмоса ведут управление спутником, антенны дальней космической связи ежедневно осуществляют прием научных данных и посылают команды на научные приборы. Ученые ИКИ РАН в оперативном режиме ведут обработку научных данных. Подобную карту на противоположной стороне неба строят ученые германского Института внеземной физики Общества имени Макса Планка (Max Planck Institut fuer Extraterrestrische Physik, MPE).

***

Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Туманность Андромеды в рентгеновских лучах за 5 минут наблюдений телескопа еРОЗИТА обсерватории «Спектр-РГ»

Многие из нас видели на небе Туманность Андромеды – ближайшую к нам массивную спиральную галактику, которая по многим своим характеристикам является двойником нашего Млечного Пути. В ясную летнюю ночь Туманность Андромеды можно увидеть невооруженным глазом. Свет от нее идет к нам более 2 миллионов лет. Туманность Андромеды и Млечный путь медленно сближаются и, видимо, сольются  через три или четыре миллиарда лет. Вероятно, этот процесс будет очень непростым для землян, если они еще будут существовать в то далекое время.

Более двух месяцев, с 8 декабря 2019 г., орбитальная обсерватория «Спектр-РГ» совершает обзор всего неба в рентгеновских лучах. Раз в полгода сканирующие небо телескопы обсерватории в течение нескольких минут фиксируют рентгеновские лучи от любого объекта на рентгеновском небе. В январе этого года траектория сканов неба проходила и через Туманность Андромеды. В общей сложности галактика находилась в поле зрения телескопов обсерватории чуть больше пяти минут. Карта Туманности Андромеды в мягких рентгеновских лучах, полученная за это короткое время, показана на рисунке.

Карта Туманности Андромеды в мягких рентгеновских лучах (c) СРГ/еРОЗИТА/ИКИ 1 из 2
Карта Туманности Андромеды в мягких рентгеновских лучах (c) СРГ/еРОЗИТА/ИКИ

На этой карте мы видим несколько десятков ярких рентгеновских источников, сгущающихся к центру галактики и к ее спиральным рукавам. Большинство из этих источников — нейтронные звезды и черные дыры, аккрецирующие вещество звезд-доноров в тесной двойной системе. Под действием сил притяжения вещество нормальной звезды медленно перетекает на релятивистскую звезду, разогреваясь до температуры в десятки миллионов градусов и излучая рентгеновские лучи. Поток рентгеновского излучения от этих объектов столь велик, что телескоп еРОЗИТА/eROSITA обсерватории «Спектр-РГ» регистрирует от каждого из них десятки и сотни фотонов всего за 5 минут, пока они находятся в его поле зрения. Яркая область в центре изображения связана с высокой концентрацией компактных источников, а также с излучением горячего ионизованного газа в ядре галактики.

Рядом с галактикой Туманность Андромеды расположен ее спутник — карликовая эллиптическая галактика М32, названной так по ее порядковому номеру в астрономическом каталоге Мессье (сама Туманность Андромеды в каталоге Мессье имеет порядковый номер 31). Телескоп еРОЗИТА также зафиксировал рентгеновское излучение и от галактики М32.

Карта Туманности Андромеды SRG/eROSITA и GALEX
Карта Туманности Андромеды SRG/eROSITA и GALEX

На втором рисунке на рентгеновское изображение наложено ультрафиолетовое изображение Туманности Андромеды, полученное спутником GALEX (NASA), телескоп которого был чувствителен к ультрафиолетовым лучам. GALEX фиксировал в основном излучение молодых и горячих звезд. Такие звезды рождаются в зонах, богатых межзвездным газом, и ультрафиолетовое изображение показывает, как они концентрируются к спиральным рукавам Туманности Андромеды. В течение ближайших десятков миллионов лет многие из них взорвутся как сверхновые и породят новые нейтронные звезды и черные дыры. Те из релятивистских звезд, на которые аккрецирует достаточно вещества, наблюдаются телескопом еРОЗИТА в рентгеновском диапазоне.

По мере накопления экспозиции в ходе обзора неба, будут детектироваться все новые и новые источники в галактике, а также проявится излучения горячего газа, разогретого взрывами сверхновых звезд.

Обсерватория «Спектр-РГ» регистрирует взрывы звезд в далеких галактиках

Телескоп АРТ-ХС на борту обсерватории «Спектр-РГ» регистрирует гамма-всплески — мощные взрывы звезд в далеких галактиках. Это открывает новые интересные перспективы для наблюдений и совместных работ с другими обсерваториями.

Во время проведения обзора всего неба 1 января 2020 г. российский телескоп ART-XC на борту обсерватории «Спектр-РГ» зарегистрировал необычное и кратковременное (длительностью около 5 секунд) повышение интенсивности излучения в своих детекторах. При этом в поле зрения инструмента никаких ярких объектов в этот момент обнаружено не было. Более того, это повышение интенсивности регистрировалось только в трех детекторах из семи, которыми оснащен телескоп.

Проведенные исследования и сравнение с данными других обсерваторий показали, что телескоп ART-XC зарегистрировал мощный гамма-всплеск, связанный со взрывом звезды в далекой галактике. При этом сигнал от этого всплеска попал на детекторы телескопа, пройдя через его боковые стенки, т.е. сильно ослабленным. Именно поэтому он был виден только в детекторах, расположенных со стороны гамма-всплеска.

Анализ всего набора имеющихся на сегодняшний день данных показал, что с начала работы миссии телескоп ART-XC зарегистрировал около десятка гамма-всплесков, сигналы от которых пришли с боковых сторон. Хорошее временное разрешение телескопа позволяет определить время прихода сигнала от гамма-всплеска с высокой точностью. Принимая во внимание, что обсерватория работает в районе точки Лагранжа L2 системы Солнце-Земля на удалении около полутора миллионов километров, можно сказать, что открылись дополнительные возможности участия в совместной работе с другими обсерваториями и инструментами, которые работают на околоземных орбитах, а также в районе точки Лагранжа L1 (в частности, российский эксперимент КОНУС на борту спутника NASA Wind) , по триангуляции гамма-всплесков и улучшению точности их локализации.

Телескопы обсерватории обладают достаточно широкими полями зрения, что также дает возможность обнаруживать послесвечения гамма-всплесков уже в самой апертуре инструментов. Такое событие произошло 20 января 2020 года, когда обсерватория «Спектр-РГ» наблюдала область локализации гамма-всплеска спустя 13 минут после самого события. Поскольку гамма-всплеск произошел на стороне неба, относящейся к зоне ответственности немецкой стороны, то российские ученые проинформировали своих немецких коллег о такой возможности. Обработав данные телескопа СРГ/еРОЗИТА, они обнаружили неизвестный ранее объект, интенсивность которого чрезвычайно быстро падала: через 4 часа, во время следующего прохода обсерватории через эту точку, объект уже был более чем в 10 раз слабее. Этот факт был интерпретирован как первая регистрация послесвечения гамма-всплеска обсерваторией «Спектр-РГ», о чем было сообщено научному сообществу. Более того, данные обсерватории позволили локализовать гамма-всплеск с высокой точностью, что дало возможность провести его наблюдения наземными оптическими телескопами.

Таким образом, регистрация всплесков в гамма-диапазоне российским телескопом АРТ-ХС обсерватории «Спектр-РГ» открывает новые возможности и для ученых и для обсерватории, а она сама теперь полностью оправдывает свое имя: полностью оно звучит «Спектр-Рентген-Гамма».

(с) С.Мольков, ИКИ РАН, СРГ/АРТ-ХС
Художественное изображение обсерватории «Спектр-РГ» и гамма-всплеска от взрыва звезды. На вкладке показан сигнал, зарегистрированный телескопом ART-XC в диапазоне энергий 60-120 кэВ через несколько секунд после обнаружения гамма-всплеска 1 января 2020 г. обсерваторией Fermi, работающей на околоземной орбите (с) С.Мольков, ИКИ РАН, СРГ/АРТ-ХС

***

Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA/еРОЗИТА (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

  • Научный руководитель миссии: академик Рашид Алиевич Сюняев;
  • Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
  • Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью.

Ожидается, что в ходе обзора неба «Спектр-РГ» обнаружит около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, сотни тысяч звезд с активными коронами и аккрецирующих белых карликов, десятки тысяч звездообразующих галактик и многие другие объекты, в том числе неизвестной природы. Эти данные исключительно важны для понимания того, как распределена материя во Вселенной, какую роль в её развитии играла темная энергия и как в ней появлялись и росли сверхмассивные чёрные дыры.

«Спектр-РГ» и (возможное) открытиe гибели звезд вблизи двух сверхмассивных черных дыр. Почти детективная история

27 декабря прошлого года в ходе сканирования всего неба рентгеновским телескопом еРОЗИТА (eROSITA) на спутнике «Спектр-РГ» был зафиксирован очень яркий рентгеновский источник на месте обычной галактики, от которой никогда не наблюдалось рентгеновского излучения на таком уровне и которая не проявляла ранее признаков наличия активного ядра. К настоящему моменту с помощью обсерватории было найдено ещё несколько подобных источников, в наблюдения за ними включаются многие космические и наземные обсерватории.

Изображение (с) И.Хабибуллин, ИКИ РАН, 2020
Схема разрушения звезды под действием приливных сил вблизи сверхмассивной черной дыры. Изображение (с) И.Хабибуллин, ИКИ РАН, 2020

Через два дня американская система обнаружения оптических вспышек на небе Zwicky Transient Facility (ZTF) автоматически зарегистрировала уярчение той же галактики в красном свете более чем в два с половиной раза. На это событие тогда никто не обратил внимания ни в знаменитом Калифорнийском технологическом институте, где обрабатываются данные ZTF, ни где-либо в другом месте в мире.

Еще через месяц рентгеновский телескоп XRT на американском спутнике Swift имени Герелса наводясь на сверхновую в направлении, близком к интересующей нас галактике, также случайно обнаружил яркий рентгеновский источник в ее направлении сравнимой мощности, но с несколько иной формой спектра.

На этой стадии российские ученые, работающие с данными СРГ/еРОЗИТА, сообщили коллегам на российских обсерваториях и астрономам всего мира о том, что по совокупности своих свойств данный объект подобен наблюдавшимся до этого случаям разрыва нормальных звезд приливными силами со стороны сверхмассивной черной дыры в центре этой галактики.

Схема этого процесса, хорошо изученного астрофизиками-теоретиками, приведена на иллюстрации. На ней показано, как нормальная звезда, движущаяся по параболической орбите вокруг черной дыры, оказывается на достаточно малом расстоянии от нее. При этом приливные силы (подобные хорошо известным приливам в океане под действием Луны) становятся настолько велики, что способны привести к потере звездой значительной части ее массы или даже полному ее разрушению.

Часть этого вещества приобретает скорость, достаточную для убегания из непосредственной окрестности черной дыры, другая же часть оказывается захваченной гравитацией и образует быстро вращающийся диск вокруг черной дыры.

Турбулентное трение между слоями газового диска приводит к отводу углового момента и продвижению вещества к черной дыре. При этом вещество в диске разогревается до десятков и сотен миллионов градусов, интенсивно излучая в рентгеновском диапазоне. В таких ситуациях светимость аккреционного диска может в десятки и даже сотни раз превышать светимость всей галактики.

На сегодняшний день, т.е. около двух месяцев с момента обнаружения, данный объект также наблюдался американской обсерваторией NuSTAR и крупнейшей рентгеновской космической обсерваторией НАСА Chandra. Поток его излучения практически не ослаб за это время. Легко оценить, какую массу вещества должна была поглотить черная дыра, чтобы обеспечить наблюдаемую лишь в рентгеновском диапазоне светимость ядра в течении почти двух месяцев. Эта величина превышает один процент массы звезды солнечного типа и заметно превосходит массу планеты или астероида.

Получить оценки подобного рода стало возможно благодаря наблюдениям на 1,6-метровом телескопе АЗТ-33 ИК Саянской солнечной обсерватории Института солнечно-земной физики СО РАН у границы с Монголией. Они позволили измерить красное смещение z=0.1, а значит и расстояние до галактики. Свет от нее шел до нас более 1 миллиарда лет. Кроме этого в спектре оптического излучения галактики наблюдатели ИКИ РАН обнаружили узкие эмиссионные линии дважды ионизованного кислорода и Бальмер-альфа линию водорода, совершенно нетипичные для такой галактики. Однако такие линии могут возникать в результате наблюдаемой активности ее ядра в рентгеновских лучах. Данные телескопа в Саянах подтверждены наблюдениями крупнейшего американского оптического телескопа Кека с диаметром зеркала в 10 метров, оснащенного адаптивной оптикой.

В ходе более чем 2-месячного обзора спутником «Спектр-РГ» четверти небесной сферы уже обнаружено несколько источников-кандидатов в события приливного разрушения звезд. О результатах первичного исследования наиболее ярких из них было сообщено в «Астрономических телеграммах» — коротких уведомлениях мирового астрономического сообщества. Такие источники очень редки и связаны с весьма редкими и экзотическими ситуациями.

18 февраля российские ученые сообщили всему миру координаты второго по яркости в рентгеновских лучах кандидата в приливное разрушение звезды сверхмассивной черной дырой. 22 февраля американская система обнаружения оптических вспышек на небе Zwicky Transient Facility (ZTF) объявила об обнаружении этой вспышки в оптических лучах.

Важнейшее отличие этих двух кандидатов в приливное разрушение звезд черными дырами от тех, что исследовались ранее и были открыты первоначально по вспышке в оптических лучах, — вспыхнувшие источники СРГ/еРОЗИТЫ излучают в рентгене в сотни и тысячи раз больше энергии, чем в оптических лучах.

Всего же за все время обзора обсерватория «Спектр-РГ» уже обнаружила и нанесла на карту более 75 тысяч источников. Большинство из них — далекие сверхмассивные черные дыры, скопления галактик, о существовании многих из которых никто не знал ранее, а также вспыхивающие звезды и белые карлики в нашей Галактике.

Ученые, работающие над обработкой уникальных данных со спутника «Спектр-РГ», благодарны специалистам НПО им. Лавочкина, ИКИ РАН и центров дальней космической связи ГК «Роскосмос» за каждодневный контроль и управление космическим аппаратом, а также прием огромного объема информации. Без работы этих специалистов оперативное получение научных результатов высочайшего класса было бы невозможно.

Обсерватории, включившиеся в наблюдения

***

Космический аппарат «Спектр-РГ» был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: АРТ-ХС/ART-XC (ИКИ РАН, Россия) и eROSITA/еРОЗИТА (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев;
Научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Николаевич Павлинский;
Научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью.

Ожидается, что в ходе обзора неба «Спектр-РГ» обнаружит около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, сотни тысяч звезд с активными коронами и аккрецирующих белых карликов, десятки тысяч звездообразующих галактик и многие другие объекты, в том числе неизвестной природы. Эти данные исключительно важны для понимания того, как распределена материя во Вселенной, какую роль в её развитии играла темная энергия и как в ней появлялись и росли сверхмассивные чёрные дыры.

НПО Лавочкина: «Спектр-РГ» завершил этап перелёта в окрестность точки L2

Специалисты Научно-производственного объединения имени С.А. Лавочкина (входит в Госкорпорацию «Роскосмос») 21 октября 2019 года провели коррекцию перехода на номинальную траекторию космического аппарата «Спектр-РГ», что означает завершение этапа перелёта аппарата в окрестность точки либрации L2 системы «Солнце — Земля».

После окончания подготовительных работ по настройке рентгеновских телескопов ART-XC и eROSITA обсерватория приступит к выполнению основной научной программы. Наблюдения будут проводиться в течение шести с половиной лет, из которых 4 года — в режиме сканирования звездного неба, а 2,5 года — в режиме точечного наблюдения объектов во Вселенной. За время 100-дневного полёта «Спектр-РГ» было выполнено две коррекции, которые обеспечили попадание на орбиту в окрестности внешней точки Лагранжа L2 системы «Солнце — Земля».

Точки либрации — это особые точки в системе «Солнце — Земля». В этих точках гравитационные поля Земли и Солнца, действующие на малое тело, уравновешены. Однако это точки неустойчивого равновесия, и поэтому для того чтобы находиться в окрестности этой точки аппарат будет выполнять эволюции по гало-орбите в несколько сотен тысяч километров вокруг точки либрации. К настоящему времени оба телескопа на борту обсерватории: eROSITA (Германия) и ART-XC (Россия) — успешно прошли этап тестирования оборудования и ведут наблюдения в рамках калибровок и ранней научной программы.

***

Космический аппарат «Спектр-РГ» был запущен ровно 100 дней назад, 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев; научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Павлинский; научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.
Основная цель миссии — построение карты всего неба в мягком (0.3-8 кэВ) и жестком (4-20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью.

Ожидается, что в ходе обзора неба «Спектр-РГ» обнаружит около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, сотни тысяч звезд с активными коронами и аккрецирующих белых карликов, десятки тысяч звездообразующих галактик и многие другие объекты, в том числе неизвестной природы. Эти данные исключительно важны для понимания того, как распределена материя во Вселенной, какую роль в её развитии играла темная энергия и как в ней появлялись и росли сверхмассивные чёрные дыры.

Оригинал новости на сайте НПО им. Лавочкина

Что увидела обсерватория СРГ на кусочке внегалактического неба: eROSITA «открывает» свой первый глаз

Орбитальная обсерватория «Спектр-РГ» (СРГ) провела важный тест, исследовав небольшой участок внегалактического неба одним из семи модулей телескопа eROSITA. Результаты хорошо согласуются с предполетными ожиданиями.

Сейчас идет работа по проверкам и отладкам других шести модулей. Она будет завершена в течение нескольких недель до перехода к началу калибровок и последующего четырехлетнего периода сканирования всего неба.

Обсерватория СРГ была запущена с космодрома Байконур 13 июля 2019 г. ракетой-носителем «Протон-М» и разгонным блоком ДМ-03. В настоящее время она находится в окрестности точки Лагранжа L2 системы «Солнце-Земля», примерно в 1,6 млн. км от Земли. Планируется, что обсерватория будет проводить наблюдения в течении шести с половиной лет, оставаясь на протяженной орбите вокруг точки L2. В течение первых четырех лет она будет сканировать небо так же, как и ее предшественники: космические обсерватории ROSAT, WMAP, «Планк» и «Гайа».

В состав обсерватории СРГ входят два рентгеновских телескопа: eROSITA (разработан Институтом внеземной физики Общества им. Макса Планка, MPE, Германия), чувствительный к мягким рентгеновским лучам, и ART-XC (разработан в Институте космических исследований РАН, ИКИ РАН, Россия), работает на более высоких энергиях.

Основная цель миссии — построить карты всего неба в мягком (0.3–8 кэВ) и жестком (4–20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью и обнаружить около 3 миллионов аккрецирующих сверхмассивных черных дыр, 100 000 скоплений галактик, многочисленные рентгеновские двойные системы, яркие в рентгеновских лучах звезды, а также построить карты диффузного излучения Галактики.

Успех миссии зависит как от чувствительности самих телескопов, так и от способности обсерватории проводить наблюдения непрерывно по 24 часа в сутки в течение четырех лет. Очень важна роль наземных пунктов, принимающих эти данные.

К радости команд, работающих с обсерваторией СРГ в России и в Германии, первые испытания были успешными для телескопа АРТ-XC, а теперь и для телескопа eROSITA.

Результаты наблюдений небольшого участка внегалактического неба 26 и 27 августа 2019 г. телескопом eROSITA/СРГ
Результаты наблюдений небольшого участка внегалактического неба 26 и 27 августа 2019 г. телескопом eROSITA/СРГ

На рисунке показаны результаты наблюдений небольшого участка внегалактического неба 2×2 градуса, наблюдавшегося 26 и 27 августа 2019 года. Центральный участок этого поля размером ~ 1×1 градус известен астрофизикам как UDS (Ultra Deep Survey. т.е. зона Сверхглубокого Обзора). Полученное изображение содержит сотни рентгеновских источников. Оно было получено в результате комбинирования нескольких точечных наблюдений и наблюдений в режиме сканирования. Эффективная экспозиция в центре поля эквивалентна 6 тысячам секунд (примерно два часа) наблюдений всеми семью модулями телескопа eROSITA.

Большинство из сотен видимых на изображении объектов представляют собой квазары (сверхмассивные черные дыры, излучающие за счет выделения гравитационной энергии веществом, падающим в черную дыру). Они настолько ярки в рентгеновских лучах, что видны даже на космологических расстояниях. Часть объектов отождествляется с активными ядрами не слишком далеких галактик и даже со звездами с очень яркими рентгеновскими коронами в нашей Галактике.

Очень яркое диффузное пятно в верхнем правом углу — массивное скопление галактик на красном смещении z = 0.139, известное как ACO 329. Скопления галактик представляют собой одни из самых массивных объектов Вселенной. Около 85% их массы составляет «темное вещество» неизвестной природы и лишь около 15% вносит привычное барионное вещество, сосредоточенное в звездах тысяч галактик скопления (свет которых мы видим в оптических лучах) и разреженном горячем межгалактическом газе с температурой в десятки миллионов градусов, излучающем в рентгеновских лучах. Именно эти рентгеновские лучи видит eROSITA на спутнике СРГ.

Только один из семи модулей телескопа eROSITA участвовал в этих тестовых наблюдениях в рамках первоначальных испытаний. Несмотря на то, что обсерватория СРГ пока еще не работает на полную мощность, оценки чувствительности (пока лишь одного из детекторов) подтверждены.
Одновременные наблюдения телескопами eROSITA и АРТ-XC позволят получить спектры ярких источников в широком энергетическом диапазоне, что позволит быстро классифицировать их.

Первые изображения, полученные обоими телескопами, пока не исследованы досконально. Но они уже продемонстрировали потенциал орбитальной обсерватории «Спектр-РГ» и показали, что надежды астрофизиков на открытие большого числа новых рентгеновских источников в ходе обзора всего неба не лишены оснований.

Эффективная работа коллективов НПО им. Лавочкина и других предприятий, создавших платформу «Навигатор» для СРГ и управляющих его работой, специалистов на громадных антеннах в Медвежьих Озерах и Уссурийске, принимающих информацию и посылающих команды для приборов, инженеров и ученых в ИКИ и MPE, дала свои первые плоды. Они вселяют уверенность в реальность построения подробнейших рентгеновских карт Вселенной.

Эта новость печатается по поручению Российского и Германского консорциумов телескопа СРГ/eROSITA.

10.09.2019 A glimpse of extragalactic sky with the SRG Observatory: eROSITA opens its first eye. Пресс-релиз Института внеземной физики Общества им. Макса Планка

Новое изображение, полученное ART-XC: Центавр в центре

Источник Центавр X-3 в центре поля зрения телескопа ART-XC. Изображение получено 3 августа 2019 г. в ходе юстировок телескопа
Источник Центавр X-3 в центре поля зрения телескопа ART-XC. Изображение получено 3 августа 2019 г. в ходе юстировок телескопа

В настоящее время (7.08.2019) аппарат «Спектр-РГ» продолжает перелёт в окрестность либрационной точки L2 системы «Солнце-Земля», продолжаются калибровки аппаратуры. В частности, разработчики ART-XC ожидают «первый свет» — первые изображения, полученные со второго телескопа eROSITA, чтобы сопоставить точность позиционирования двух телескопов.

***

Космический аппарат «Спектр-РГ» создан с участием Германии в рамках Федеральной космической программы России по заказу Российской Академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (АО «НПО Лавочкина», Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев; научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Павлинский; научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

НПО Лавочкина: Вторая коррекция траектории перелёта «Спектр-РГ»

Группа управления КА «Спектр-РГ» АО «НПО Лавочкина» 6 августа 2019 года провела вторую плановую коррекцию траектории перелёта КА «Спектр-РГ».

Коррекция заключалась в выдаче двух импульсов двигательной установки КА «Спектр-РГ» с интервалом 4 часа – в 17:30 мск и 21:35 мск соответственно. Операция прошла успешно. Бортовые системы КА «Спектр-РГ» в норме. Аппарат продолжает перелёт в окрестность либрационной точки L2 системы Солнце-Земля, которую он должен достичь в октябре текущего года. На своей рабочей орбите, на расстоянии 1,5 млн. км от Земли аппарат будет проводить исследования Вселенной в рентгеновском диапазоне длин волн.

***

Космический аппарат «Спектр-РГ» создан с участием Германии в рамках Федеральной космической программы России по заказу Российской Академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (АО «НПО Лавочкина», Россия), адаптированной под задачи проекта.

Научный руководитель миссии: академик Рашид Алиевич Сюняев; научный руководитель по телескопу ART-XC (Россия): доктор физ.-мат. наук Михаил Павлинский; научный руководитель по телескопу eROSITA (Германия): доктор Петер Предель.

Источник: НПО Лавочкина

«Первый свет» ART-XC: «телескоп работает так, как мы ожидали»

30 июля 2019 года получен «первый свет» — первое рентгеновское изображение российского телескопа ART-XC на борту обсерватории «Спектр-РГ».

Телескоп наблюдал небольшую часть неба размером ~0.3 град2, в которой расположена двойная система Cen X-3. Система состоит из нейтронной звезды (рентгеновского пульсара с периодом вращения 4.84 секунды), которая вращается вокруг звезды — массивного голубого сверхгиганта спектрального класса О. Двойная система находится на расстоянии ~18.6 тысяч световых от Земли. Рентгеновский пульсар Cen X-3 хорошо известен, и является первым рентгеновским пульсаром открытым в нашей Галактике в 1971 году спутником UHURU. Именно поэтому он был выбран для проверки работоспособности телескопа и построения первого изображения.

«Все семь зеркальных систем телескопа работают так, как мы ожидали, — говорит Михаил Павлинский, ведущий ученый по телескопу ART-XC и заместитель научного руководителя проекта «Спектр-РГ». — Время первой экспозиции составило всего 45 минут. По полученному рентгеновскому изображению было оценено отклонение оптических осей семи зеркальных систем телескопа ART-XC от направления оси космического аппарата, направленной на Cen X-3, и оно оказалось небольшим, всего 11,33 угловые минуты, что будет учтено в дальнейших наведениях космического аппарата. Оси всех зеркальных систем ART-XC также оказались хорошо сьюстированы, смотрят в одну сторону с погрешностью менее одной минуты дуги. Таким образом, на этом этапе можно сказать, что наш телескоп работает так, как мы ожидали, и подтверждает все заявленные характеристики. В ближайшее время будут проводиться союстировки зеркальных систем и бортовых звёздных датчиков и калибровки детекторов телескопа».

ART-XC — один из двух телескопов, установленных на борту обсерватории «Спектр-РГ». Он был создан в Институте космических исследований Российской Академии наук совместно с Российским Федеральным ядерным центром (г. Саров, Россия). В проекте также участвует Центр космических полетов им. Маршалла, НАСА, США в части рентгеновских зеркальных систем.

Телескоп состоит из семи зеркальных систем (модулей). В фокальной плоскости каждой из них находится позиционно-чувствительный и спектрометрический полупроводниковый рентгеновский детекторов на основе теллурида кадмия. Фактически, ART-XC состоит из семи независимых зеркальных телескопов косого падения, смотрящих в одну сторону, что повышает чувствительность наблюдений. Рентгеновские детекторы были разработаны и созданы в ИКИ РАН.

30 июля обсерватория «Спектр-РГ» находилась на удалении 1,1 миллиона километров от Земли. Это рекорд для российской космонавтики в новом тысячелетии. Также «Спектр-РГ» —  первый отечественный аппарат, которому предстоит работать в точке Лагранжа L2, которая находится примерно в 1,5 миллиона километров от нашей планеты. Прибытие и выход на рабочую орбиту вокруг L2 ожидаются в конце октября этого года.

Второй телескоп проекта — eROSITA, созданный в Германии. К настоящему времени была откинута крышка, которая закрывала входные отверстия зеркальных систем. Ожидается, что первое изображение eROSITA будет получено в середине сентября.

***

«Спектр-РГ» (СРГ) / Spektr-RG — космическая астрофизическая обсерватория, нацеленная на исследование Вселенной в рентгеновском диапазоне электромагнитного излучения в окрестности точки либрации L2 системы «Солнце-Земля».

Космическая обсерватория «Спектр-РГ» была создана в рамках Федеральной космической программы России, раздел «Фундаментальные космические исследования», по заказу Российской Академии наук с участием Германии.

Пример «первого света» ART-XC. Изображение участка неба 0.3 кв. град с рентгеновским пульсаром Cen X-3, полученное 30.07.2019 на одном из семи детекторов URD28
Пример «первого света» ART-XC. Изображение участка неба 0.3 кв. град с рентгеновским пульсаром Cen X-3, полученное 30.07.2019 на одном из семи детекторов URD28. Энергетический диапазон 4–20 кэВ. Шкала по глубине логарифмическая, цвета отражают яркость пикселей. Зеленая штрихованная окружность показывает границы входного бериллиевого окна, диаметр ~36 минут дуги
Спектр отсчётов по рабочей области детектора URD28 (диаметр 28.56 мм), в зависимости от энергии
Зелёным цветом показан спектр отсчётов по рабочей области детектора URD28 (диаметр 28.56 мм), в зависимости от энергии. По вертикали отложено число отсчётов в секунду на кэВ, по горизонтали — энергия фотонов в кэВ. Для сравнения приведён спектр отсчетов для «пустого» поля, полученный тем же детектором телескопа ART-XC чуть ранее 24–25 июля. Хорошо видно превышение сигнала от Cen X-3 над фоном в диапазоне энергий 4–20 кэВ, и при этом не использовано преимущество построения изображения телескопом и наличие ещё шести телескопов, что позволит повысить соотношение «сигнал/шум» на два порядка величины